MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn Structured version   Visualization version   GIF version

Theorem kgencn 23443
Description: A function from a compactly generated space is continuous iff it is continuous "on compacta". (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝐾   𝑘,𝑋   𝑘,𝑌

Proof of Theorem kgencn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgentopon 23425 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
2 iscn 23122 . . 3 (((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽))))
31, 2sylan 580 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽))))
4 cnvimass 6053 . . . . . . 7 (𝐹𝑥) ⊆ dom 𝐹
5 fdm 6697 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
65adantl 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → dom 𝐹 = 𝑋)
74, 6sseqtrid 3989 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹𝑥) ⊆ 𝑋)
8 elkgen 23423 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝐹𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
98ad2antrr 726 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝐹𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
107, 9mpbirand 707 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
1110ralbidv 3156 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
12 ralcom 3265 . . . . 5 (∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
13 simpr 484 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝐹:𝑋𝑌)
14 elpwi 4570 . . . . . . . . . . 11 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
15 fssres 6726 . . . . . . . . . . 11 ((𝐹:𝑋𝑌𝑘𝑋) → (𝐹𝑘):𝑘𝑌)
1613, 14, 15syl2an 596 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐹𝑘):𝑘𝑌)
17 simpll 766 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
18 resttopon 23048 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
1917, 14, 18syl2an 596 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
20 simpllr 775 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑌))
21 iscn 23122 . . . . . . . . . . 11 (((𝐽t 𝑘) ∈ (TopOn‘𝑘) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ((𝐹𝑘):𝑘𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘))))
2219, 20, 21syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ((𝐹𝑘):𝑘𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘))))
2316, 22mpbirand 707 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘)))
24 cnvresima 6203 . . . . . . . . . . 11 ((𝐹𝑘) “ 𝑥) = ((𝐹𝑥) ∩ 𝑘)
2524eleq1i 2819 . . . . . . . . . 10 (((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘) ↔ ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))
2625ralbii 3075 . . . . . . . . 9 (∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘) ↔ ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))
2723, 26bitrdi 287 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
2827imbi2d 340 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ((𝐽t 𝑘) ∈ Comp → ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
29 r19.21v 3158 . . . . . . 7 (∀𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
3028, 29bitr4di 289 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
3130ralbidva 3154 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑘 ∈ 𝒫 𝑋𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
3212, 31bitr4id 290 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
3311, 32bitrd 279 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
3433pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
353, 34bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3913  wss 3914  𝒫 cpw 4563  ccnv 5637  dom cdm 5638  cres 5640  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  t crest 17383  TopOnctopon 22797   Cn ccn 23111  Compccmp 23273  𝑘Genckgen 23420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-map 8801  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-cmp 23274  df-kgen 23421
This theorem is referenced by:  kgencn2  23444
  Copyright terms: Public domain W3C validator