| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | kgentopon 23546 | . . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽)
∈ (TopOn‘𝑋)) | 
| 2 |  | iscn 23243 | . . 3
⊢
(((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽)))) | 
| 3 | 1, 2 | sylan 580 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽)))) | 
| 4 |  | cnvimass 6100 | . . . . . . 7
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 | 
| 5 |  | fdm 6745 | . . . . . . . 8
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) | 
| 6 | 5 | adantl 481 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = 𝑋) | 
| 7 | 4, 6 | sseqtrid 4026 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (◡𝐹 “ 𝑥) ⊆ 𝑋) | 
| 8 |  | elkgen 23544 | . . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((◡𝐹 “ 𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | 
| 9 | 8 | ad2antrr 726 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((◡𝐹 “ 𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | 
| 10 | 7, 9 | mpbirand 707 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) | 
| 11 | 10 | ralbidv 3178 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑥 ∈ 𝐾 ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) | 
| 12 |  | ralcom 3289 | . . . . 5
⊢
(∀𝑥 ∈
𝐾 ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋∀𝑥 ∈ 𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) | 
| 13 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝐹:𝑋⟶𝑌) | 
| 14 |  | elpwi 4607 | . . . . . . . . . . 11
⊢ (𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋) | 
| 15 |  | fssres 6774 | . . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑘 ⊆ 𝑋) → (𝐹 ↾ 𝑘):𝑘⟶𝑌) | 
| 16 | 13, 14, 15 | syl2an 596 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐹 ↾ 𝑘):𝑘⟶𝑌) | 
| 17 |  | simpll 767 | . . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 18 |  | resttopon 23169 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ⊆ 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) | 
| 19 | 17, 14, 18 | syl2an 596 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) | 
| 20 |  | simpllr 776 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 21 |  | iscn 23243 | . . . . . . . . . . 11
⊢ (((𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ((𝐹 ↾ 𝑘):𝑘⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘)))) | 
| 22 | 19, 20, 21 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ((𝐹 ↾ 𝑘):𝑘⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘)))) | 
| 23 | 16, 22 | mpbirand 707 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘))) | 
| 24 |  | cnvresima 6250 | . . . . . . . . . . 11
⊢ (◡(𝐹 ↾ 𝑘) “ 𝑥) = ((◡𝐹 “ 𝑥) ∩ 𝑘) | 
| 25 | 24 | eleq1i 2832 | . . . . . . . . . 10
⊢ ((◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘) ↔ ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) | 
| 26 | 25 | ralbii 3093 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘) ↔ ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) | 
| 27 | 23, 26 | bitrdi 287 | . . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) | 
| 28 | 27 | imbi2d 340 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) | 
| 29 |  | r19.21v 3180 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) | 
| 30 | 28, 29 | bitr4di 289 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ∀𝑥 ∈ 𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) | 
| 31 | 30 | ralbidva 3176 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ∀𝑘 ∈ 𝒫 𝑋∀𝑥 ∈ 𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) | 
| 32 | 12, 31 | bitr4id 290 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝐾 ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) | 
| 33 | 11, 32 | bitrd 279 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) | 
| 34 | 33 | pm5.32da 579 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) | 
| 35 | 3, 34 | bitrd 279 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) |