Step | Hyp | Ref
| Expression |
1 | | kgentopon 22689 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽)
∈ (TopOn‘𝑋)) |
2 | | iscn 22386 |
. . 3
⊢
(((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽)))) |
3 | 1, 2 | sylan 580 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽)))) |
4 | | cnvimass 5989 |
. . . . . . 7
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
5 | | fdm 6609 |
. . . . . . . 8
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
6 | 5 | adantl 482 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = 𝑋) |
7 | 4, 6 | sseqtrid 3973 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (◡𝐹 “ 𝑥) ⊆ 𝑋) |
8 | | elkgen 22687 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((◡𝐹 “ 𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
9 | 8 | ad2antrr 723 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((◡𝐹 “ 𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
10 | 7, 9 | mpbirand 704 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
11 | 10 | ralbidv 3112 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑥 ∈ 𝐾 ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
12 | | ralcom 3166 |
. . . . 5
⊢
(∀𝑥 ∈
𝐾 ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋∀𝑥 ∈ 𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
13 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝐹:𝑋⟶𝑌) |
14 | | elpwi 4542 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋) |
15 | | fssres 6640 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑘 ⊆ 𝑋) → (𝐹 ↾ 𝑘):𝑘⟶𝑌) |
16 | 13, 14, 15 | syl2an 596 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐹 ↾ 𝑘):𝑘⟶𝑌) |
17 | | simpll 764 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
18 | | resttopon 22312 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ⊆ 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
19 | 17, 14, 18 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
20 | | simpllr 773 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
21 | | iscn 22386 |
. . . . . . . . . . 11
⊢ (((𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ((𝐹 ↾ 𝑘):𝑘⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘)))) |
22 | 19, 20, 21 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ((𝐹 ↾ 𝑘):𝑘⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘)))) |
23 | 16, 22 | mpbirand 704 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘))) |
24 | | cnvresima 6133 |
. . . . . . . . . . 11
⊢ (◡(𝐹 ↾ 𝑘) “ 𝑥) = ((◡𝐹 “ 𝑥) ∩ 𝑘) |
25 | 24 | eleq1i 2829 |
. . . . . . . . . 10
⊢ ((◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘) ↔ ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
26 | 25 | ralbii 3092 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘) ↔ ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
27 | 23, 26 | bitrdi 287 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
28 | 27 | imbi2d 341 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
29 | | r19.21v 3113 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
30 | 28, 29 | bitr4di 289 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ∀𝑥 ∈ 𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
31 | 30 | ralbidva 3111 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ∀𝑘 ∈ 𝒫 𝑋∀𝑥 ∈ 𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
32 | 12, 31 | bitr4id 290 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝐾 ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) |
33 | 11, 32 | bitrd 278 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) |
34 | 33 | pm5.32da 579 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) |
35 | 3, 34 | bitrd 278 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) |