MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn Structured version   Visualization version   GIF version

Theorem kgencn 23585
Description: A function from a compactly generated space is continuous iff it is continuous "on compacta". (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝐾   𝑘,𝑋   𝑘,𝑌

Proof of Theorem kgencn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgentopon 23567 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
2 iscn 23264 . . 3 (((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽))))
31, 2sylan 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽))))
4 cnvimass 6111 . . . . . . 7 (𝐹𝑥) ⊆ dom 𝐹
5 fdm 6756 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
65adantl 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → dom 𝐹 = 𝑋)
74, 6sseqtrid 4061 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹𝑥) ⊆ 𝑋)
8 elkgen 23565 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝐹𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
98ad2antrr 725 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝐹𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
107, 9mpbirand 706 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
1110ralbidv 3184 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
12 ralcom 3295 . . . . 5 (∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
13 simpr 484 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝐹:𝑋𝑌)
14 elpwi 4629 . . . . . . . . . . 11 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
15 fssres 6787 . . . . . . . . . . 11 ((𝐹:𝑋𝑌𝑘𝑋) → (𝐹𝑘):𝑘𝑌)
1613, 14, 15syl2an 595 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐹𝑘):𝑘𝑌)
17 simpll 766 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
18 resttopon 23190 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
1917, 14, 18syl2an 595 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
20 simpllr 775 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑌))
21 iscn 23264 . . . . . . . . . . 11 (((𝐽t 𝑘) ∈ (TopOn‘𝑘) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ((𝐹𝑘):𝑘𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘))))
2219, 20, 21syl2anc 583 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ((𝐹𝑘):𝑘𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘))))
2316, 22mpbirand 706 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘)))
24 cnvresima 6261 . . . . . . . . . . 11 ((𝐹𝑘) “ 𝑥) = ((𝐹𝑥) ∩ 𝑘)
2524eleq1i 2835 . . . . . . . . . 10 (((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘) ↔ ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))
2625ralbii 3099 . . . . . . . . 9 (∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘) ↔ ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))
2723, 26bitrdi 287 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
2827imbi2d 340 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ((𝐽t 𝑘) ∈ Comp → ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
29 r19.21v 3186 . . . . . . 7 (∀𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
3028, 29bitr4di 289 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
3130ralbidva 3182 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑘 ∈ 𝒫 𝑋𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
3212, 31bitr4id 290 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
3311, 32bitrd 279 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
3433pm5.32da 578 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
353, 34bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976  𝒫 cpw 4622  ccnv 5699  dom cdm 5700  cres 5702  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  t crest 17480  TopOnctopon 22937   Cn ccn 23253  Compccmp 23415  𝑘Genckgen 23562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-map 8886  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-cmp 23416  df-kgen 23563
This theorem is referenced by:  kgencn2  23586
  Copyright terms: Public domain W3C validator