MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn Structured version   Visualization version   GIF version

Theorem kgencn 22707
Description: A function from a compactly generated space is continuous iff it is continuous "on compacta". (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝐾   𝑘,𝑋   𝑘,𝑌

Proof of Theorem kgencn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgentopon 22689 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
2 iscn 22386 . . 3 (((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽))))
31, 2sylan 580 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽))))
4 cnvimass 5989 . . . . . . 7 (𝐹𝑥) ⊆ dom 𝐹
5 fdm 6609 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
65adantl 482 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → dom 𝐹 = 𝑋)
74, 6sseqtrid 3973 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹𝑥) ⊆ 𝑋)
8 elkgen 22687 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝐹𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
98ad2antrr 723 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝐹𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
107, 9mpbirand 704 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
1110ralbidv 3112 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
12 ralcom 3166 . . . . 5 (∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
13 simpr 485 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝐹:𝑋𝑌)
14 elpwi 4542 . . . . . . . . . . 11 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
15 fssres 6640 . . . . . . . . . . 11 ((𝐹:𝑋𝑌𝑘𝑋) → (𝐹𝑘):𝑘𝑌)
1613, 14, 15syl2an 596 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐹𝑘):𝑘𝑌)
17 simpll 764 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
18 resttopon 22312 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
1917, 14, 18syl2an 596 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
20 simpllr 773 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑌))
21 iscn 22386 . . . . . . . . . . 11 (((𝐽t 𝑘) ∈ (TopOn‘𝑘) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ((𝐹𝑘):𝑘𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘))))
2219, 20, 21syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ((𝐹𝑘):𝑘𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘))))
2316, 22mpbirand 704 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘)))
24 cnvresima 6133 . . . . . . . . . . 11 ((𝐹𝑘) “ 𝑥) = ((𝐹𝑥) ∩ 𝑘)
2524eleq1i 2829 . . . . . . . . . 10 (((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘) ↔ ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))
2625ralbii 3092 . . . . . . . . 9 (∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘) ↔ ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))
2723, 26bitrdi 287 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
2827imbi2d 341 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ((𝐽t 𝑘) ∈ Comp → ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
29 r19.21v 3113 . . . . . . 7 (∀𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
3028, 29bitr4di 289 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
3130ralbidva 3111 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑘 ∈ 𝒫 𝑋𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
3212, 31bitr4id 290 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
3311, 32bitrd 278 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
3433pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
353, 34bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cin 3886  wss 3887  𝒫 cpw 4533  ccnv 5588  dom cdm 5589  cres 5591  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  t crest 17131  TopOnctopon 22059   Cn ccn 22375  Compccmp 22537  𝑘Genckgen 22684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-map 8617  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-cmp 22538  df-kgen 22685
This theorem is referenced by:  kgencn2  22708
  Copyright terms: Public domain W3C validator