MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn Structured version   Visualization version   GIF version

Theorem kgencn 23499
Description: A function from a compactly generated space is continuous iff it is continuous "on compacta". (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝐾   𝑘,𝑋   𝑘,𝑌

Proof of Theorem kgencn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgentopon 23481 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
2 iscn 23178 . . 3 (((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽))))
31, 2sylan 580 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽))))
4 cnvimass 6074 . . . . . . 7 (𝐹𝑥) ⊆ dom 𝐹
5 fdm 6720 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
65adantl 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → dom 𝐹 = 𝑋)
74, 6sseqtrid 4006 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹𝑥) ⊆ 𝑋)
8 elkgen 23479 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝐹𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
98ad2antrr 726 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝐹𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
107, 9mpbirand 707 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
1110ralbidv 3164 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
12 ralcom 3274 . . . . 5 (∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
13 simpr 484 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝐹:𝑋𝑌)
14 elpwi 4587 . . . . . . . . . . 11 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
15 fssres 6749 . . . . . . . . . . 11 ((𝐹:𝑋𝑌𝑘𝑋) → (𝐹𝑘):𝑘𝑌)
1613, 14, 15syl2an 596 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐹𝑘):𝑘𝑌)
17 simpll 766 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
18 resttopon 23104 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
1917, 14, 18syl2an 596 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
20 simpllr 775 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑌))
21 iscn 23178 . . . . . . . . . . 11 (((𝐽t 𝑘) ∈ (TopOn‘𝑘) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ((𝐹𝑘):𝑘𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘))))
2219, 20, 21syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ((𝐹𝑘):𝑘𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘))))
2316, 22mpbirand 707 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘)))
24 cnvresima 6224 . . . . . . . . . . 11 ((𝐹𝑘) “ 𝑥) = ((𝐹𝑥) ∩ 𝑘)
2524eleq1i 2826 . . . . . . . . . 10 (((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘) ↔ ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))
2625ralbii 3083 . . . . . . . . 9 (∀𝑥𝐾 ((𝐹𝑘) “ 𝑥) ∈ (𝐽t 𝑘) ↔ ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))
2723, 26bitrdi 287 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
2827imbi2d 340 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ((𝐽t 𝑘) ∈ Comp → ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
29 r19.21v 3166 . . . . . . 7 (∀𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → ∀𝑥𝐾 ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)))
3028, 29bitr4di 289 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
3130ralbidva 3162 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑘 ∈ 𝒫 𝑋𝑥𝐾 ((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘))))
3212, 31bitr4id 290 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝐹𝑥) ∩ 𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
3311, 32bitrd 279 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
3433pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ (𝑘Gen‘𝐽)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
353, 34bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  cin 3930  wss 3931  𝒫 cpw 4580  ccnv 5658  dom cdm 5659  cres 5661  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  t crest 17439  TopOnctopon 22853   Cn ccn 23167  Compccmp 23329  𝑘Genckgen 23476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-map 8847  df-en 8965  df-fin 8968  df-fi 9428  df-rest 17441  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-cn 23170  df-cmp 23330  df-kgen 23477
This theorem is referenced by:  kgencn2  23500
  Copyright terms: Public domain W3C validator