Step | Hyp | Ref
| Expression |
1 | | kgentopon 21865 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽)
∈ (TopOn‘𝑋)) |
2 | | iscn 21562 |
. . 3
⊢
(((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽)))) |
3 | 1, 2 | sylan 572 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽)))) |
4 | | cnvimass 5786 |
. . . . . . 7
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
5 | | fdm 6349 |
. . . . . . . 8
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
6 | 5 | adantl 474 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = 𝑋) |
7 | 4, 6 | syl5sseq 3902 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (◡𝐹 “ 𝑥) ⊆ 𝑋) |
8 | | elkgen 21863 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((◡𝐹 “ 𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
9 | 8 | ad2antrr 714 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((◡𝐹 “ 𝑥) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
10 | 7, 9 | mpbirand 695 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
11 | 10 | ralbidv 3140 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑥 ∈ 𝐾 ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
12 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝐹:𝑋⟶𝑌) |
13 | | elpwi 4426 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋) |
14 | | fssres 6370 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑘 ⊆ 𝑋) → (𝐹 ↾ 𝑘):𝑘⟶𝑌) |
15 | 12, 13, 14 | syl2an 587 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐹 ↾ 𝑘):𝑘⟶𝑌) |
16 | | simpll 755 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
17 | | resttopon 21488 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ⊆ 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
18 | 16, 13, 17 | syl2an 587 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
19 | | simpllr 764 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
20 | | iscn 21562 |
. . . . . . . . . . 11
⊢ (((𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ((𝐹 ↾ 𝑘):𝑘⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘)))) |
21 | 18, 19, 20 | syl2anc 576 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ((𝐹 ↾ 𝑘):𝑘⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘)))) |
22 | 15, 21 | mpbirand 695 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘))) |
23 | | cnvresima 5923 |
. . . . . . . . . . 11
⊢ (◡(𝐹 ↾ 𝑘) “ 𝑥) = ((◡𝐹 “ 𝑥) ∩ 𝑘) |
24 | 23 | eleq1i 2849 |
. . . . . . . . . 10
⊢ ((◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘) ↔ ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
25 | 24 | ralbii 3108 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐾 (◡(𝐹 ↾ 𝑘) “ 𝑥) ∈ (𝐽 ↾t 𝑘) ↔ ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
26 | 22, 25 | syl6bb 279 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
27 | 26 | imbi2d 333 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
28 | | r19.21v 3118 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → ∀𝑥 ∈ 𝐾 ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
29 | 27, 28 | syl6bbr 281 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ∀𝑥 ∈ 𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
30 | 29 | ralbidva 3139 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ∀𝑘 ∈ 𝒫 𝑋∀𝑥 ∈ 𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
31 | | ralcom 3288 |
. . . . 5
⊢
(∀𝑥 ∈
𝐾 ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋∀𝑥 ∈ 𝐾 ((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
32 | 30, 31 | syl6rbbr 282 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝐾 ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((◡𝐹 “ 𝑥) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) |
33 | 11, 32 | bitrd 271 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) |
34 | 33 | pm5.32da 571 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ (𝑘Gen‘𝐽)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) |
35 | 3, 34 | bitrd 271 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) |