Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1stpreima Structured version   Visualization version   GIF version

Theorem 1stpreima 31039
Description: The preimage by 1st is a 'vertical band'. (Contributed by Thierry Arnoux, 13-Oct-2017.)
Assertion
Ref Expression
1stpreima (𝐴𝐵 → ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶))

Proof of Theorem 1stpreima
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elxp7 7866 . . . . . 6 (𝑤 ∈ (𝐵 × 𝐶) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)))
21anbi2i 623 . . . . 5 (((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶))))
3 anass 469 . . . . . . 7 ((((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵) ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
43a1i 11 . . . . . 6 (𝐴𝐵 → ((((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵) ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)))))
5 ssel 3914 . . . . . . . 8 (𝐴𝐵 → ((1st𝑤) ∈ 𝐴 → (1st𝑤) ∈ 𝐵))
65pm4.71d 562 . . . . . . 7 (𝐴𝐵 → ((1st𝑤) ∈ 𝐴 ↔ ((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵)))
76anbi1d 630 . . . . . 6 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ (((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵) ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
8 an12 642 . . . . . . . 8 ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)))
98anbi2i 623 . . . . . . 7 (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶))) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
109a1i 11 . . . . . 6 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶))) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)))))
114, 7, 103bitr4d 311 . . . . 5 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)))))
122, 11bitr4id 290 . . . 4 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
13 an12 642 . . . 4 (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐶)))
1412, 13bitrdi 287 . . 3 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐶))))
15 cnvresima 6133 . . . . 5 ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) = ((1st𝐴) ∩ (𝐵 × 𝐶))
1615eleq2i 2830 . . . 4 (𝑤 ∈ ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ 𝑤 ∈ ((1st𝐴) ∩ (𝐵 × 𝐶)))
17 elin 3903 . . . 4 (𝑤 ∈ ((1st𝐴) ∩ (𝐵 × 𝐶)) ↔ (𝑤 ∈ (1st𝐴) ∧ 𝑤 ∈ (𝐵 × 𝐶)))
18 vex 3436 . . . . . 6 𝑤 ∈ V
19 fo1st 7851 . . . . . . 7 1st :V–onto→V
20 fofn 6690 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
21 elpreima 6935 . . . . . . 7 (1st Fn V → (𝑤 ∈ (1st𝐴) ↔ (𝑤 ∈ V ∧ (1st𝑤) ∈ 𝐴)))
2219, 20, 21mp2b 10 . . . . . 6 (𝑤 ∈ (1st𝐴) ↔ (𝑤 ∈ V ∧ (1st𝑤) ∈ 𝐴))
2318, 22mpbiran 706 . . . . 5 (𝑤 ∈ (1st𝐴) ↔ (1st𝑤) ∈ 𝐴)
2423anbi1i 624 . . . 4 ((𝑤 ∈ (1st𝐴) ∧ 𝑤 ∈ (𝐵 × 𝐶)) ↔ ((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
2516, 17, 243bitri 297 . . 3 (𝑤 ∈ ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ ((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
26 elxp7 7866 . . 3 (𝑤 ∈ (𝐴 × 𝐶) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐶)))
2714, 25, 263bitr4g 314 . 2 (𝐴𝐵 → (𝑤 ∈ ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ 𝑤 ∈ (𝐴 × 𝐶)))
2827eqrdv 2736 1 (𝐴𝐵 → ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887   × cxp 5587  ccnv 5588  cres 5591  cima 5592   Fn wfn 6428  ontowfo 6431  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  sxbrsigalem2  32253
  Copyright terms: Public domain W3C validator