Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1stpreima Structured version   Visualization version   GIF version

Theorem 1stpreima 32686
Description: The preimage by 1st is a 'vertical band'. (Contributed by Thierry Arnoux, 13-Oct-2017.)
Assertion
Ref Expression
1stpreima (𝐴𝐵 → ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶))

Proof of Theorem 1stpreima
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elxp7 7956 . . . . . 6 (𝑤 ∈ (𝐵 × 𝐶) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)))
21anbi2i 623 . . . . 5 (((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶))))
3 anass 468 . . . . . . 7 ((((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵) ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
43a1i 11 . . . . . 6 (𝐴𝐵 → ((((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵) ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)))))
5 ssel 3928 . . . . . . . 8 (𝐴𝐵 → ((1st𝑤) ∈ 𝐴 → (1st𝑤) ∈ 𝐵))
65pm4.71d 561 . . . . . . 7 (𝐴𝐵 → ((1st𝑤) ∈ 𝐴 ↔ ((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵)))
76anbi1d 631 . . . . . 6 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ (((1st𝑤) ∈ 𝐴 ∧ (1st𝑤) ∈ 𝐵) ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
8 an12 645 . . . . . . . 8 ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)))
98anbi2i 623 . . . . . . 7 (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶))) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
109a1i 11 . . . . . 6 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶))) ↔ ((1st𝑤) ∈ 𝐴 ∧ ((1st𝑤) ∈ 𝐵 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)))))
114, 7, 103bitr4d 311 . . . . 5 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)))))
122, 11bitr4id 290 . . . 4 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ ((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶))))
13 an12 645 . . . 4 (((1st𝑤) ∈ 𝐴 ∧ (𝑤 ∈ (V × V) ∧ (2nd𝑤) ∈ 𝐶)) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐶)))
1412, 13bitrdi 287 . . 3 (𝐴𝐵 → (((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐶))))
15 cnvresima 6177 . . . . 5 ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) = ((1st𝐴) ∩ (𝐵 × 𝐶))
1615eleq2i 2823 . . . 4 (𝑤 ∈ ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ 𝑤 ∈ ((1st𝐴) ∩ (𝐵 × 𝐶)))
17 elin 3918 . . . 4 (𝑤 ∈ ((1st𝐴) ∩ (𝐵 × 𝐶)) ↔ (𝑤 ∈ (1st𝐴) ∧ 𝑤 ∈ (𝐵 × 𝐶)))
18 vex 3440 . . . . . 6 𝑤 ∈ V
19 fo1st 7941 . . . . . . 7 1st :V–onto→V
20 fofn 6737 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
21 elpreima 6991 . . . . . . 7 (1st Fn V → (𝑤 ∈ (1st𝐴) ↔ (𝑤 ∈ V ∧ (1st𝑤) ∈ 𝐴)))
2219, 20, 21mp2b 10 . . . . . 6 (𝑤 ∈ (1st𝐴) ↔ (𝑤 ∈ V ∧ (1st𝑤) ∈ 𝐴))
2318, 22mpbiran 709 . . . . 5 (𝑤 ∈ (1st𝐴) ↔ (1st𝑤) ∈ 𝐴)
2423anbi1i 624 . . . 4 ((𝑤 ∈ (1st𝐴) ∧ 𝑤 ∈ (𝐵 × 𝐶)) ↔ ((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
2516, 17, 243bitri 297 . . 3 (𝑤 ∈ ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ ((1st𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
26 elxp7 7956 . . 3 (𝑤 ∈ (𝐴 × 𝐶) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐶)))
2714, 25, 263bitr4g 314 . 2 (𝐴𝐵 → (𝑤 ∈ ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ 𝑤 ∈ (𝐴 × 𝐶)))
2827eqrdv 2729 1 (𝐴𝐵 → ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3901  wss 3902   × cxp 5614  ccnv 5615  cres 5618  cima 5619   Fn wfn 6476  ontowfo 6479  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  sxbrsigalem2  34297
  Copyright terms: Public domain W3C validator