Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1stpreima Structured version   Visualization version   GIF version

Theorem 1stpreima 31915
Description: The preimage by 1st is a 'vertical band'. (Contributed by Thierry Arnoux, 13-Oct-2017.)
Assertion
Ref Expression
1stpreima (š“ āŠ† šµ ā†’ (ā—”(1st ā†¾ (šµ Ɨ š¶)) ā€œ š“) = (š“ Ɨ š¶))

Proof of Theorem 1stpreima
Dummy variable š‘¤ is distinct from all other variables.
StepHypRef Expression
1 elxp7 8006 . . . . . 6 (š‘¤ āˆˆ (šµ Ɨ š¶) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))
21anbi2i 623 . . . . 5 (((1st ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)) ā†” ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶))))
3 anass 469 . . . . . . 7 ((((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) ā†” ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶))))
43a1i 11 . . . . . 6 (š“ āŠ† šµ ā†’ ((((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) ā†” ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))))
5 ssel 3974 . . . . . . . 8 (š“ āŠ† šµ ā†’ ((1st ā€˜š‘¤) āˆˆ š“ ā†’ (1st ā€˜š‘¤) āˆˆ šµ))
65pm4.71d 562 . . . . . . 7 (š“ āŠ† šµ ā†’ ((1st ā€˜š‘¤) āˆˆ š“ ā†” ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (1st ā€˜š‘¤) āˆˆ šµ)))
76anbi1d 630 . . . . . 6 (š“ āŠ† šµ ā†’ (((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) ā†” (((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶))))
8 an12 643 . . . . . . . 8 ((š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) ā†” ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))
98anbi2i 623 . . . . . . 7 (((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶))) ā†” ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶))))
109a1i 11 . . . . . 6 (š“ āŠ† šµ ā†’ (((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶))) ā†” ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))))
114, 7, 103bitr4d 310 . . . . 5 (š“ āŠ† šµ ā†’ (((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) ā†” ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))))
122, 11bitr4id 289 . . . 4 (š“ āŠ† šµ ā†’ (((1st ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)) ā†” ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶))))
13 an12 643 . . . 4 (((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (š‘¤ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))
1412, 13bitrdi 286 . . 3 (š“ āŠ† šµ ā†’ (((1st ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶))))
15 cnvresima 6226 . . . . 5 (ā—”(1st ā†¾ (šµ Ɨ š¶)) ā€œ š“) = ((ā—”1st ā€œ š“) āˆ© (šµ Ɨ š¶))
1615eleq2i 2825 . . . 4 (š‘¤ āˆˆ (ā—”(1st ā†¾ (šµ Ɨ š¶)) ā€œ š“) ā†” š‘¤ āˆˆ ((ā—”1st ā€œ š“) āˆ© (šµ Ɨ š¶)))
17 elin 3963 . . . 4 (š‘¤ āˆˆ ((ā—”1st ā€œ š“) āˆ© (šµ Ɨ š¶)) ā†” (š‘¤ āˆˆ (ā—”1st ā€œ š“) āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
18 vex 3478 . . . . . 6 š‘¤ āˆˆ V
19 fo1st 7991 . . . . . . 7 1st :Vā€“ontoā†’V
20 fofn 6804 . . . . . . 7 (1st :Vā€“ontoā†’V ā†’ 1st Fn V)
21 elpreima 7056 . . . . . . 7 (1st Fn V ā†’ (š‘¤ āˆˆ (ā—”1st ā€œ š“) ā†” (š‘¤ āˆˆ V āˆ§ (1st ā€˜š‘¤) āˆˆ š“)))
2219, 20, 21mp2b 10 . . . . . 6 (š‘¤ āˆˆ (ā—”1st ā€œ š“) ā†” (š‘¤ āˆˆ V āˆ§ (1st ā€˜š‘¤) āˆˆ š“))
2318, 22mpbiran 707 . . . . 5 (š‘¤ āˆˆ (ā—”1st ā€œ š“) ā†” (1st ā€˜š‘¤) āˆˆ š“)
2423anbi1i 624 . . . 4 ((š‘¤ āˆˆ (ā—”1st ā€œ š“) āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)) ā†” ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
2516, 17, 243bitri 296 . . 3 (š‘¤ āˆˆ (ā—”(1st ā†¾ (šµ Ɨ š¶)) ā€œ š“) ā†” ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
26 elxp7 8006 . . 3 (š‘¤ āˆˆ (š“ Ɨ š¶) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ š“ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))
2714, 25, 263bitr4g 313 . 2 (š“ āŠ† šµ ā†’ (š‘¤ āˆˆ (ā—”(1st ā†¾ (šµ Ɨ š¶)) ā€œ š“) ā†” š‘¤ āˆˆ (š“ Ɨ š¶)))
2827eqrdv 2730 1 (š“ āŠ† šµ ā†’ (ā—”(1st ā†¾ (šµ Ɨ š¶)) ā€œ š“) = (š“ Ɨ š¶))
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   ā†” wb 205   āˆ§ wa 396   = wceq 1541   āˆˆ wcel 2106  Vcvv 3474   āˆ© cin 3946   āŠ† wss 3947   Ɨ cxp 5673  ā—”ccnv 5674   ā†¾ cres 5677   ā€œ cima 5678   Fn wfn 6535  ā€“ontoā†’wfo 6538  ā€˜cfv 6540  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-1st 7971  df-2nd 7972
This theorem is referenced by:  sxbrsigalem2  33273
  Copyright terms: Public domain W3C validator