Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnrest | Structured version Visualization version GIF version |
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnrest.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cnrest | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrest.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | cnf 22397 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐹:𝑋⟶∪ 𝐾) |
5 | simpr 485 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
6 | 4, 5 | fssresd 6641 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾) |
7 | cnvresima 6133 | . . . 4 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝑜) = ((◡𝐹 “ 𝑜) ∩ 𝐴) | |
8 | cntop1 22391 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
9 | 8 | adantr 481 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ Top) |
10 | 9 | adantr 481 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → 𝐽 ∈ Top) |
11 | 1 | topopn 22055 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
12 | ssexg 5247 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
13 | 12 | ancoms 459 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
14 | 11, 13 | sylan 580 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
15 | 8, 14 | sylan 580 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
16 | 15 | adantr 481 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → 𝐴 ∈ V) |
17 | cnima 22416 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑜 ∈ 𝐾) → (◡𝐹 “ 𝑜) ∈ 𝐽) | |
18 | 17 | adantlr 712 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → (◡𝐹 “ 𝑜) ∈ 𝐽) |
19 | elrestr 17139 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ (◡𝐹 “ 𝑜) ∈ 𝐽) → ((◡𝐹 “ 𝑜) ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
20 | 10, 16, 18, 19 | syl3anc 1370 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → ((◡𝐹 “ 𝑜) ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
21 | 7, 20 | eqeltrid 2843 | . . 3 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)) |
22 | 21 | ralrimiva 3103 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)) |
23 | 1 | toptopon 22066 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
24 | 8, 23 | sylib 217 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
25 | resttopon 22312 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
26 | 24, 25 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
27 | cntop2 22392 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
28 | 27 | adantr 481 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ Top) |
29 | 2 | toptopon 22066 | . . . 4 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
30 | 28, 29 | sylib 217 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
31 | iscn 22386 | . . 3 ⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)))) | |
32 | 26, 30, 31 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)))) |
33 | 6, 22, 32 | mpbir2and 710 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∪ cuni 4839 ◡ccnv 5588 ↾ cres 5591 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 Topctop 22042 TopOnctopon 22059 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-map 8617 df-en 8734 df-fin 8737 df-fi 9170 df-rest 17133 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 df-cn 22378 |
This theorem is referenced by: resthauslem 22514 imacmp 22548 connima 22576 kgencn2 22708 kgencn3 22709 xkopjcn 22807 cnmpt1res 22827 cnmpt2res 22828 qtoprest 22868 hmeores 22922 ftalem3 26224 rmulccn 31878 raddcn 31879 xrge0mulc1cn 31891 rrhre 31971 cvmliftmolem1 33243 cvmlift2lem9a 33265 cvmlift2lem9 33273 ivthALT 34524 broucube 35811 areacirclem2 35866 cnres2 35921 stoweidlem28 43569 dirkercncflem2 43645 |
Copyright terms: Public domain | W3C validator |