MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrest Structured version   Visualization version   GIF version

Theorem cnrest 23172
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnrest.1 𝑋 = 𝐽
Assertion
Ref Expression
cnrest ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))

Proof of Theorem cnrest
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 cnrest.1 . . . . 5 𝑋 = 𝐽
2 eqid 2729 . . . . 5 𝐾 = 𝐾
31, 2cnf 23133 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
43adantr 480 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋 𝐾)
5 simpr 484 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴𝑋)
64, 5fssresd 6727 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴):𝐴 𝐾)
7 cnvresima 6203 . . . 4 ((𝐹𝐴) “ 𝑜) = ((𝐹𝑜) ∩ 𝐴)
8 cntop1 23127 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
98adantr 480 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
109adantr 480 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → 𝐽 ∈ Top)
111topopn 22793 . . . . . . . 8 (𝐽 ∈ Top → 𝑋𝐽)
12 ssexg 5278 . . . . . . . . 9 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
1312ancoms 458 . . . . . . . 8 ((𝑋𝐽𝐴𝑋) → 𝐴 ∈ V)
1411, 13sylan 580 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ∈ V)
158, 14sylan 580 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴 ∈ V)
1615adantr 480 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → 𝐴 ∈ V)
17 cnima 23152 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑜𝐾) → (𝐹𝑜) ∈ 𝐽)
1817adantlr 715 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → (𝐹𝑜) ∈ 𝐽)
19 elrestr 17391 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ (𝐹𝑜) ∈ 𝐽) → ((𝐹𝑜) ∩ 𝐴) ∈ (𝐽t 𝐴))
2010, 16, 18, 19syl3anc 1373 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → ((𝐹𝑜) ∩ 𝐴) ∈ (𝐽t 𝐴))
217, 20eqeltrid 2832 . . 3 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))
2221ralrimiva 3125 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))
231toptopon 22804 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
248, 23sylib 218 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋))
25 resttopon 23048 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
2624, 25sylan 580 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
27 cntop2 23128 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2827adantr 480 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
292toptopon 22804 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3028, 29sylib 218 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
31 iscn 23122 . . 3 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))))
3226, 30, 31syl2anc 584 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))))
336, 22, 32mpbir2and 713 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cin 3913  wss 3914   cuni 4871  ccnv 5637  cres 5640  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  TopOnctopon 22797   Cn ccn 23111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-map 8801  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114
This theorem is referenced by:  resthauslem  23250  imacmp  23284  connima  23312  kgencn2  23444  kgencn3  23445  xkopjcn  23543  cnmpt1res  23563  cnmpt2res  23564  qtoprest  23604  hmeores  23658  ftalem3  26985  rmulccn  33918  raddcn  33919  xrge0mulc1cn  33931  rrhre  34011  cvmliftmolem1  35268  cvmlift2lem9a  35290  cvmlift2lem9  35298  ivthALT  36323  broucube  37648  areacirclem2  37703  cnres2  37757  resuppsinopn  42351  stoweidlem28  46026  dirkercncflem2  46102
  Copyright terms: Public domain W3C validator