![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrest | Structured version Visualization version GIF version |
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnrest.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cnrest | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrest.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | eqid 2735 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | cnf 23270 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐹:𝑋⟶∪ 𝐾) |
5 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
6 | 4, 5 | fssresd 6776 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾) |
7 | cnvresima 6252 | . . . 4 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝑜) = ((◡𝐹 “ 𝑜) ∩ 𝐴) | |
8 | cntop1 23264 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ Top) |
10 | 9 | adantr 480 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → 𝐽 ∈ Top) |
11 | 1 | topopn 22928 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
12 | ssexg 5329 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
13 | 12 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
14 | 11, 13 | sylan 580 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
15 | 8, 14 | sylan 580 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
16 | 15 | adantr 480 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → 𝐴 ∈ V) |
17 | cnima 23289 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑜 ∈ 𝐾) → (◡𝐹 “ 𝑜) ∈ 𝐽) | |
18 | 17 | adantlr 715 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → (◡𝐹 “ 𝑜) ∈ 𝐽) |
19 | elrestr 17475 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ (◡𝐹 “ 𝑜) ∈ 𝐽) → ((◡𝐹 “ 𝑜) ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
20 | 10, 16, 18, 19 | syl3anc 1370 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → ((◡𝐹 “ 𝑜) ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
21 | 7, 20 | eqeltrid 2843 | . . 3 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)) |
22 | 21 | ralrimiva 3144 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)) |
23 | 1 | toptopon 22939 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
24 | 8, 23 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
25 | resttopon 23185 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
26 | 24, 25 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
27 | cntop2 23265 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
28 | 27 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ Top) |
29 | 2 | toptopon 22939 | . . . 4 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
30 | 28, 29 | sylib 218 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
31 | iscn 23259 | . . 3 ⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)))) | |
32 | 26, 30, 31 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)))) |
33 | 6, 22, 32 | mpbir2and 713 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ∪ cuni 4912 ◡ccnv 5688 ↾ cres 5691 “ cima 5692 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↾t crest 17467 Topctop 22915 TopOnctopon 22932 Cn ccn 23248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-map 8867 df-en 8985 df-fin 8988 df-fi 9449 df-rest 17469 df-topgen 17490 df-top 22916 df-topon 22933 df-bases 22969 df-cn 23251 |
This theorem is referenced by: resthauslem 23387 imacmp 23421 connima 23449 kgencn2 23581 kgencn3 23582 xkopjcn 23680 cnmpt1res 23700 cnmpt2res 23701 qtoprest 23741 hmeores 23795 ftalem3 27133 rmulccn 33889 raddcn 33890 xrge0mulc1cn 33902 rrhre 33984 cvmliftmolem1 35266 cvmlift2lem9a 35288 cvmlift2lem9 35296 ivthALT 36318 broucube 37641 areacirclem2 37696 cnres2 37750 stoweidlem28 45984 dirkercncflem2 46060 |
Copyright terms: Public domain | W3C validator |