![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrest | Structured version Visualization version GIF version |
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnrest.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cnrest | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrest.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | eqid 2797 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | cnf 21542 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐹:𝑋⟶∪ 𝐾) |
5 | simpr 485 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
6 | 4, 5 | fssresd 6420 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾) |
7 | cnvresima 5969 | . . . 4 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝑜) = ((◡𝐹 “ 𝑜) ∩ 𝐴) | |
8 | cntop1 21536 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
9 | 8 | adantr 481 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ Top) |
10 | 9 | adantr 481 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → 𝐽 ∈ Top) |
11 | 1 | topopn 21202 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
12 | ssexg 5125 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
13 | 12 | ancoms 459 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
14 | 11, 13 | sylan 580 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
15 | 8, 14 | sylan 580 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
16 | 15 | adantr 481 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → 𝐴 ∈ V) |
17 | cnima 21561 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑜 ∈ 𝐾) → (◡𝐹 “ 𝑜) ∈ 𝐽) | |
18 | 17 | adantlr 711 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → (◡𝐹 “ 𝑜) ∈ 𝐽) |
19 | elrestr 16535 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ (◡𝐹 “ 𝑜) ∈ 𝐽) → ((◡𝐹 “ 𝑜) ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
20 | 10, 16, 18, 19 | syl3anc 1364 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → ((◡𝐹 “ 𝑜) ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
21 | 7, 20 | syl5eqel 2889 | . . 3 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)) |
22 | 21 | ralrimiva 3151 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)) |
23 | 1 | toptopon 21213 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
24 | 8, 23 | sylib 219 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
25 | resttopon 21457 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
26 | 24, 25 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
27 | cntop2 21537 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
28 | 27 | adantr 481 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ Top) |
29 | 2 | toptopon 21213 | . . . 4 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
30 | 28, 29 | sylib 219 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
31 | iscn 21531 | . . 3 ⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)))) | |
32 | 26, 30, 31 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)))) |
33 | 6, 22, 32 | mpbir2and 709 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∀wral 3107 Vcvv 3440 ∩ cin 3864 ⊆ wss 3865 ∪ cuni 4751 ◡ccnv 5449 ↾ cres 5452 “ cima 5453 ⟶wf 6228 ‘cfv 6232 (class class class)co 7023 ↾t crest 16527 Topctop 21189 TopOnctopon 21206 Cn ccn 21520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-oadd 7964 df-er 8146 df-map 8265 df-en 8365 df-fin 8368 df-fi 8728 df-rest 16529 df-topgen 16550 df-top 21190 df-topon 21207 df-bases 21242 df-cn 21523 |
This theorem is referenced by: resthauslem 21659 imacmp 21693 connima 21721 kgencn2 21853 kgencn3 21854 xkopjcn 21952 cnmpt1res 21972 cnmpt2res 21973 qtoprest 22013 hmeores 22067 ftalem3 25338 rmulccn 30784 raddcn 30785 xrge0mulc1cn 30797 rrhre 30875 cvmliftmolem1 32138 cvmlift2lem9a 32160 cvmlift2lem9 32168 ivthALT 33294 broucube 34478 areacirclem2 34535 cnres2 34594 stoweidlem28 41877 dirkercncflem2 41953 |
Copyright terms: Public domain | W3C validator |