MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrest Structured version   Visualization version   GIF version

Theorem cnrest 22182
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnrest.1 𝑋 = 𝐽
Assertion
Ref Expression
cnrest ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))

Proof of Theorem cnrest
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 cnrest.1 . . . . 5 𝑋 = 𝐽
2 eqid 2737 . . . . 5 𝐾 = 𝐾
31, 2cnf 22143 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
43adantr 484 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋 𝐾)
5 simpr 488 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴𝑋)
64, 5fssresd 6586 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴):𝐴 𝐾)
7 cnvresima 6093 . . . 4 ((𝐹𝐴) “ 𝑜) = ((𝐹𝑜) ∩ 𝐴)
8 cntop1 22137 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
98adantr 484 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
109adantr 484 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → 𝐽 ∈ Top)
111topopn 21803 . . . . . . . 8 (𝐽 ∈ Top → 𝑋𝐽)
12 ssexg 5216 . . . . . . . . 9 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
1312ancoms 462 . . . . . . . 8 ((𝑋𝐽𝐴𝑋) → 𝐴 ∈ V)
1411, 13sylan 583 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ∈ V)
158, 14sylan 583 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴 ∈ V)
1615adantr 484 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → 𝐴 ∈ V)
17 cnima 22162 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑜𝐾) → (𝐹𝑜) ∈ 𝐽)
1817adantlr 715 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → (𝐹𝑜) ∈ 𝐽)
19 elrestr 16933 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ (𝐹𝑜) ∈ 𝐽) → ((𝐹𝑜) ∩ 𝐴) ∈ (𝐽t 𝐴))
2010, 16, 18, 19syl3anc 1373 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → ((𝐹𝑜) ∩ 𝐴) ∈ (𝐽t 𝐴))
217, 20eqeltrid 2842 . . 3 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))
2221ralrimiva 3105 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))
231toptopon 21814 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
248, 23sylib 221 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋))
25 resttopon 22058 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
2624, 25sylan 583 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
27 cntop2 22138 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2827adantr 484 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
292toptopon 21814 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3028, 29sylib 221 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
31 iscn 22132 . . 3 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))))
3226, 30, 31syl2anc 587 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))))
336, 22, 32mpbir2and 713 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  cin 3865  wss 3866   cuni 4819  ccnv 5550  cres 5553  cima 5554  wf 6376  cfv 6380  (class class class)co 7213  t crest 16925  Topctop 21790  TopOnctopon 21807   Cn ccn 22121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-map 8510  df-en 8627  df-fin 8630  df-fi 9027  df-rest 16927  df-topgen 16948  df-top 21791  df-topon 21808  df-bases 21843  df-cn 22124
This theorem is referenced by:  resthauslem  22260  imacmp  22294  connima  22322  kgencn2  22454  kgencn3  22455  xkopjcn  22553  cnmpt1res  22573  cnmpt2res  22574  qtoprest  22614  hmeores  22668  ftalem3  25957  rmulccn  31592  raddcn  31593  xrge0mulc1cn  31605  rrhre  31683  cvmliftmolem1  32956  cvmlift2lem9a  32978  cvmlift2lem9  32986  ivthALT  34261  broucube  35548  areacirclem2  35603  cnres2  35658  stoweidlem28  43244  dirkercncflem2  43320
  Copyright terms: Public domain W3C validator