| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnrest | Structured version Visualization version GIF version | ||
| Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnrest.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cnrest | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrest.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | cnf 23109 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐹:𝑋⟶∪ 𝐾) |
| 5 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 6 | 4, 5 | fssresd 6709 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾) |
| 7 | cnvresima 6191 | . . . 4 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝑜) = ((◡𝐹 “ 𝑜) ∩ 𝐴) | |
| 8 | cntop1 23103 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ Top) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → 𝐽 ∈ Top) |
| 11 | 1 | topopn 22769 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 12 | ssexg 5273 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
| 13 | 12 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 14 | 11, 13 | sylan 580 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 15 | 8, 14 | sylan 580 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → 𝐴 ∈ V) |
| 17 | cnima 23128 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑜 ∈ 𝐾) → (◡𝐹 “ 𝑜) ∈ 𝐽) | |
| 18 | 17 | adantlr 715 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → (◡𝐹 “ 𝑜) ∈ 𝐽) |
| 19 | elrestr 17367 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ (◡𝐹 “ 𝑜) ∈ 𝐽) → ((◡𝐹 “ 𝑜) ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
| 20 | 10, 16, 18, 19 | syl3anc 1373 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → ((◡𝐹 “ 𝑜) ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
| 21 | 7, 20 | eqeltrid 2832 | . . 3 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)) |
| 22 | 21 | ralrimiva 3125 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)) |
| 23 | 1 | toptopon 22780 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 24 | 8, 23 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
| 25 | resttopon 23024 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
| 26 | 24, 25 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 27 | cntop2 23104 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 28 | 27 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ Top) |
| 29 | 2 | toptopon 22780 | . . . 4 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 30 | 28, 29 | sylib 218 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 31 | iscn 23098 | . . 3 ⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)))) | |
| 32 | 26, 30, 31 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)))) |
| 33 | 6, 22, 32 | mpbir2and 713 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ∪ cuni 4867 ◡ccnv 5630 ↾ cres 5633 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↾t crest 17359 Topctop 22756 TopOnctopon 22773 Cn ccn 23087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-map 8778 df-en 8896 df-fin 8899 df-fi 9338 df-rest 17361 df-topgen 17382 df-top 22757 df-topon 22774 df-bases 22809 df-cn 23090 |
| This theorem is referenced by: resthauslem 23226 imacmp 23260 connima 23288 kgencn2 23420 kgencn3 23421 xkopjcn 23519 cnmpt1res 23539 cnmpt2res 23540 qtoprest 23580 hmeores 23634 ftalem3 26961 rmulccn 33891 raddcn 33892 xrge0mulc1cn 33904 rrhre 33984 cvmliftmolem1 35241 cvmlift2lem9a 35263 cvmlift2lem9 35271 ivthALT 36296 broucube 37621 areacirclem2 37676 cnres2 37730 resuppsinopn 42324 stoweidlem28 45999 dirkercncflem2 46075 |
| Copyright terms: Public domain | W3C validator |