Step | Hyp | Ref
| Expression |
1 | | invfval.c |
. . . . 5
β’ (π β πΆ β Cat) |
2 | | isofval 17575 |
. . . . 5
β’ (πΆ β Cat β
(IsoβπΆ) = ((π§ β V β¦ dom π§) β (InvβπΆ))) |
3 | 1, 2 | syl 17 |
. . . 4
β’ (π β (IsoβπΆ) = ((π§ β V β¦ dom π§) β (InvβπΆ))) |
4 | | isoval.n |
. . . 4
β’ πΌ = (IsoβπΆ) |
5 | | invfval.n |
. . . . 5
β’ π = (InvβπΆ) |
6 | 5 | coeq2i 5813 |
. . . 4
β’ ((π§ β V β¦ dom π§) β π) = ((π§ β V β¦ dom π§) β (InvβπΆ)) |
7 | 3, 4, 6 | 3eqtr4g 2803 |
. . 3
β’ (π β πΌ = ((π§ β V β¦ dom π§) β π)) |
8 | 7 | oveqd 7367 |
. 2
β’ (π β (ππΌπ) = (π((π§ β V β¦ dom π§) β π)π)) |
9 | | eqid 2738 |
. . . . . 6
β’ (π₯ β π΅, π¦ β π΅ β¦ ((π₯(SectβπΆ)π¦) β© β‘(π¦(SectβπΆ)π₯))) = (π₯ β π΅, π¦ β π΅ β¦ ((π₯(SectβπΆ)π¦) β© β‘(π¦(SectβπΆ)π₯))) |
10 | | ovex 7383 |
. . . . . . 7
β’ (π₯(SectβπΆ)π¦) β V |
11 | 10 | inex1 5273 |
. . . . . 6
β’ ((π₯(SectβπΆ)π¦) β© β‘(π¦(SectβπΆ)π₯)) β V |
12 | 9, 11 | fnmpoi 7991 |
. . . . 5
β’ (π₯ β π΅, π¦ β π΅ β¦ ((π₯(SectβπΆ)π¦) β© β‘(π¦(SectβπΆ)π₯))) Fn (π΅ Γ π΅) |
13 | | invfval.b |
. . . . . . 7
β’ π΅ = (BaseβπΆ) |
14 | | invfval.x |
. . . . . . 7
β’ (π β π β π΅) |
15 | | invfval.y |
. . . . . . 7
β’ (π β π β π΅) |
16 | | eqid 2738 |
. . . . . . 7
β’
(SectβπΆ) =
(SectβπΆ) |
17 | 13, 5, 1, 14, 15, 16 | invffval 17576 |
. . . . . 6
β’ (π β π = (π₯ β π΅, π¦ β π΅ β¦ ((π₯(SectβπΆ)π¦) β© β‘(π¦(SectβπΆ)π₯)))) |
18 | 17 | fneq1d 6591 |
. . . . 5
β’ (π β (π Fn (π΅ Γ π΅) β (π₯ β π΅, π¦ β π΅ β¦ ((π₯(SectβπΆ)π¦) β© β‘(π¦(SectβπΆ)π₯))) Fn (π΅ Γ π΅))) |
19 | 12, 18 | mpbiri 258 |
. . . 4
β’ (π β π Fn (π΅ Γ π΅)) |
20 | 14, 15 | opelxpd 5669 |
. . . 4
β’ (π β β¨π, πβ© β (π΅ Γ π΅)) |
21 | | fvco2 6934 |
. . . 4
β’ ((π Fn (π΅ Γ π΅) β§ β¨π, πβ© β (π΅ Γ π΅)) β (((π§ β V β¦ dom π§) β π)ββ¨π, πβ©) = ((π§ β V β¦ dom π§)β(πββ¨π, πβ©))) |
22 | 19, 20, 21 | syl2anc 585 |
. . 3
β’ (π β (((π§ β V β¦ dom π§) β π)ββ¨π, πβ©) = ((π§ β V β¦ dom π§)β(πββ¨π, πβ©))) |
23 | | df-ov 7353 |
. . 3
β’ (π((π§ β V β¦ dom π§) β π)π) = (((π§ β V β¦ dom π§) β π)ββ¨π, πβ©) |
24 | | ovex 7383 |
. . . . 5
β’ (πππ) β V |
25 | | dmeq 5856 |
. . . . . 6
β’ (π§ = (πππ) β dom π§ = dom (πππ)) |
26 | | eqid 2738 |
. . . . . 6
β’ (π§ β V β¦ dom π§) = (π§ β V β¦ dom π§) |
27 | 24 | dmex 7839 |
. . . . . 6
β’ dom
(πππ) β V |
28 | 25, 26, 27 | fvmpt 6944 |
. . . . 5
β’ ((πππ) β V β ((π§ β V β¦ dom π§)β(πππ)) = dom (πππ)) |
29 | 24, 28 | ax-mp 5 |
. . . 4
β’ ((π§ β V β¦ dom π§)β(πππ)) = dom (πππ) |
30 | | df-ov 7353 |
. . . . 5
β’ (πππ) = (πββ¨π, πβ©) |
31 | 30 | fveq2i 6841 |
. . . 4
β’ ((π§ β V β¦ dom π§)β(πππ)) = ((π§ β V β¦ dom π§)β(πββ¨π, πβ©)) |
32 | 29, 31 | eqtr3i 2768 |
. . 3
β’ dom
(πππ) = ((π§ β V β¦ dom π§)β(πββ¨π, πβ©)) |
33 | 22, 23, 32 | 3eqtr4g 2803 |
. 2
β’ (π β (π((π§ β V β¦ dom π§) β π)π) = dom (πππ)) |
34 | 8, 33 | eqtrd 2778 |
1
β’ (π β (ππΌπ) = dom (πππ)) |