| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoval | Structured version Visualization version GIF version | ||
| Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 21-May-2020.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isoval | ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isofval 17695 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))) |
| 4 | isoval.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 5 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 6 | 5 | coeq2i 5814 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)) |
| 7 | 3, 4, 6 | 3eqtr4g 2789 | . . 3 ⊢ (𝜑 → 𝐼 = ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)) |
| 8 | 7 | oveqd 7386 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) = (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌)) |
| 9 | eqid 2729 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) | |
| 10 | ovex 7402 | . . . . . . 7 ⊢ (𝑥(Sect‘𝐶)𝑦) ∈ V | |
| 11 | 10 | inex1 5267 | . . . . . 6 ⊢ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V |
| 12 | 9, 11 | fnmpoi 8028 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵) |
| 13 | invfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 14 | eqid 2729 | . . . . . . 7 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 15 | 13, 5, 1, 14 | invffval 17696 | . . . . . 6 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))) |
| 16 | 15 | fneq1d 6593 | . . . . 5 ⊢ (𝜑 → (𝑁 Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵))) |
| 17 | 12, 16 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝑁 Fn (𝐵 × 𝐵)) |
| 18 | invss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 19 | invss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | 18, 19 | opelxpd 5670 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 21 | fvco2 6940 | . . . 4 ⊢ ((𝑁 Fn (𝐵 × 𝐵) ∧ 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉))) | |
| 22 | 17, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉))) |
| 23 | df-ov 7372 | . . 3 ⊢ (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) | |
| 24 | ovex 7402 | . . . . 5 ⊢ (𝑋𝑁𝑌) ∈ V | |
| 25 | dmeq 5857 | . . . . . 6 ⊢ (𝑧 = (𝑋𝑁𝑌) → dom 𝑧 = dom (𝑋𝑁𝑌)) | |
| 26 | eqid 2729 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ dom 𝑧) = (𝑧 ∈ V ↦ dom 𝑧) | |
| 27 | 24 | dmex 7865 | . . . . . 6 ⊢ dom (𝑋𝑁𝑌) ∈ V |
| 28 | 25, 26, 27 | fvmpt 6950 | . . . . 5 ⊢ ((𝑋𝑁𝑌) ∈ V → ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌)) |
| 29 | 24, 28 | ax-mp 5 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌) |
| 30 | df-ov 7372 | . . . . 5 ⊢ (𝑋𝑁𝑌) = (𝑁‘〈𝑋, 𝑌〉) | |
| 31 | 30 | fveq2i 6843 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉)) |
| 32 | 29, 31 | eqtr3i 2754 | . . 3 ⊢ dom (𝑋𝑁𝑌) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉)) |
| 33 | 22, 23, 32 | 3eqtr4g 2789 | . 2 ⊢ (𝜑 → (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = dom (𝑋𝑁𝑌)) |
| 34 | 8, 33 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 〈cop 4591 ↦ cmpt 5183 × cxp 5629 ◡ccnv 5630 dom cdm 5631 ∘ ccom 5635 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 Basecbs 17155 Catccat 17601 Sectcsect 17682 Invcinv 17683 Isociso 17684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-inv 17686 df-iso 17687 |
| This theorem is referenced by: inviso1 17704 invf 17706 invco 17709 dfiso2 17710 isohom 17714 oppciso 17719 cicsym 17742 ffthiso 17869 fuciso 17916 setciso 18029 catciso 18049 rngciso 20523 ringciso 20557 rngcisoALTV 48238 ringcisoALTV 48272 isofval2 48994 isoval2 48997 isopropdlem 49002 |
| Copyright terms: Public domain | W3C validator |