Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoval Structured version   Visualization version   GIF version

Theorem isoval 17030
 Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 21-May-2020.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
isoval (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))

Proof of Theorem isoval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
2 isofval 17022 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)))
31, 2syl 17 . . . 4 (𝜑 → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)))
4 isoval.n . . . 4 𝐼 = (Iso‘𝐶)
5 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
65coeq2i 5699 . . . 4 ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))
73, 4, 63eqtr4g 2861 . . 3 (𝜑𝐼 = ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁))
87oveqd 7156 . 2 (𝜑 → (𝑋𝐼𝑌) = (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌))
9 eqid 2801 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
10 ovex 7172 . . . . . . 7 (𝑥(Sect‘𝐶)𝑦) ∈ V
1110inex1 5188 . . . . . 6 ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V
129, 11fnmpoi 7754 . . . . 5 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵)
13 invfval.b . . . . . . 7 𝐵 = (Base‘𝐶)
14 invfval.x . . . . . . 7 (𝜑𝑋𝐵)
15 invfval.y . . . . . . 7 (𝜑𝑌𝐵)
16 eqid 2801 . . . . . . 7 (Sect‘𝐶) = (Sect‘𝐶)
1713, 5, 1, 14, 15, 16invffval 17023 . . . . . 6 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
1817fneq1d 6420 . . . . 5 (𝜑 → (𝑁 Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵)))
1912, 18mpbiri 261 . . . 4 (𝜑𝑁 Fn (𝐵 × 𝐵))
2014, 15opelxpd 5561 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
21 fvco2 6739 . . . 4 ((𝑁 Fn (𝐵 × 𝐵) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘⟨𝑋, 𝑌⟩) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩)))
2219, 20, 21syl2anc 587 . . 3 (𝜑 → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘⟨𝑋, 𝑌⟩) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩)))
23 df-ov 7142 . . 3 (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘⟨𝑋, 𝑌⟩)
24 ovex 7172 . . . . 5 (𝑋𝑁𝑌) ∈ V
25 dmeq 5740 . . . . . 6 (𝑧 = (𝑋𝑁𝑌) → dom 𝑧 = dom (𝑋𝑁𝑌))
26 eqid 2801 . . . . . 6 (𝑧 ∈ V ↦ dom 𝑧) = (𝑧 ∈ V ↦ dom 𝑧)
2724dmex 7602 . . . . . 6 dom (𝑋𝑁𝑌) ∈ V
2825, 26, 27fvmpt 6749 . . . . 5 ((𝑋𝑁𝑌) ∈ V → ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌))
2924, 28ax-mp 5 . . . 4 ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌)
30 df-ov 7142 . . . . 5 (𝑋𝑁𝑌) = (𝑁‘⟨𝑋, 𝑌⟩)
3130fveq2i 6652 . . . 4 ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩))
3229, 31eqtr3i 2826 . . 3 dom (𝑋𝑁𝑌) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩))
3322, 23, 323eqtr4g 2861 . 2 (𝜑 → (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = dom (𝑋𝑁𝑌))
348, 33eqtrd 2836 1 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112  Vcvv 3444   ∩ cin 3883  ⟨cop 4534   ↦ cmpt 5113   × cxp 5521  ◡ccnv 5522  dom cdm 5523   ∘ ccom 5527   Fn wfn 6323  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  Basecbs 16478  Catccat 16930  Sectcsect 17009  Invcinv 17010  Isociso 17011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-inv 17013  df-iso 17014 This theorem is referenced by:  inviso1  17031  invf  17033  invco  17036  dfiso2  17037  isohom  17041  oppciso  17046  cicsym  17069  ffthiso  17194  fuciso  17240  setciso  17346  catciso  17362  rngciso  44593  rngcisoALTV  44605  ringciso  44644  ringcisoALTV  44668
 Copyright terms: Public domain W3C validator