| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoval | Structured version Visualization version GIF version | ||
| Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 21-May-2020.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isoval | ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isofval 17683 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))) |
| 4 | isoval.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 5 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 6 | 5 | coeq2i 5807 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)) |
| 7 | 3, 4, 6 | 3eqtr4g 2789 | . . 3 ⊢ (𝜑 → 𝐼 = ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)) |
| 8 | 7 | oveqd 7370 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) = (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌)) |
| 9 | eqid 2729 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) | |
| 10 | ovex 7386 | . . . . . . 7 ⊢ (𝑥(Sect‘𝐶)𝑦) ∈ V | |
| 11 | 10 | inex1 5259 | . . . . . 6 ⊢ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V |
| 12 | 9, 11 | fnmpoi 8012 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵) |
| 13 | invfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 14 | eqid 2729 | . . . . . . 7 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 15 | 13, 5, 1, 14 | invffval 17684 | . . . . . 6 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))) |
| 16 | 15 | fneq1d 6579 | . . . . 5 ⊢ (𝜑 → (𝑁 Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵))) |
| 17 | 12, 16 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝑁 Fn (𝐵 × 𝐵)) |
| 18 | invss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 19 | invss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | 18, 19 | opelxpd 5662 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 21 | fvco2 6924 | . . . 4 ⊢ ((𝑁 Fn (𝐵 × 𝐵) ∧ 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉))) | |
| 22 | 17, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉))) |
| 23 | df-ov 7356 | . . 3 ⊢ (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) | |
| 24 | ovex 7386 | . . . . 5 ⊢ (𝑋𝑁𝑌) ∈ V | |
| 25 | dmeq 5850 | . . . . . 6 ⊢ (𝑧 = (𝑋𝑁𝑌) → dom 𝑧 = dom (𝑋𝑁𝑌)) | |
| 26 | eqid 2729 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ dom 𝑧) = (𝑧 ∈ V ↦ dom 𝑧) | |
| 27 | 24 | dmex 7849 | . . . . . 6 ⊢ dom (𝑋𝑁𝑌) ∈ V |
| 28 | 25, 26, 27 | fvmpt 6934 | . . . . 5 ⊢ ((𝑋𝑁𝑌) ∈ V → ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌)) |
| 29 | 24, 28 | ax-mp 5 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌) |
| 30 | df-ov 7356 | . . . . 5 ⊢ (𝑋𝑁𝑌) = (𝑁‘〈𝑋, 𝑌〉) | |
| 31 | 30 | fveq2i 6829 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉)) |
| 32 | 29, 31 | eqtr3i 2754 | . . 3 ⊢ dom (𝑋𝑁𝑌) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉)) |
| 33 | 22, 23, 32 | 3eqtr4g 2789 | . 2 ⊢ (𝜑 → (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = dom (𝑋𝑁𝑌)) |
| 34 | 8, 33 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 〈cop 4585 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 dom cdm 5623 ∘ ccom 5627 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17139 Catccat 17589 Sectcsect 17670 Invcinv 17671 Isociso 17672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-inv 17674 df-iso 17675 |
| This theorem is referenced by: inviso1 17692 invf 17694 invco 17697 dfiso2 17698 isohom 17702 oppciso 17707 cicsym 17730 ffthiso 17857 fuciso 17904 setciso 18017 catciso 18037 rngciso 20542 ringciso 20576 rngcisoALTV 48281 ringcisoALTV 48315 isofval2 49037 isoval2 49040 isopropdlem 49045 |
| Copyright terms: Public domain | W3C validator |