| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoval | Structured version Visualization version GIF version | ||
| Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 21-May-2020.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isoval | ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isofval 17719 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))) |
| 4 | isoval.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 5 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 6 | 5 | coeq2i 5824 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)) |
| 7 | 3, 4, 6 | 3eqtr4g 2789 | . . 3 ⊢ (𝜑 → 𝐼 = ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)) |
| 8 | 7 | oveqd 7404 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) = (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌)) |
| 9 | eqid 2729 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) | |
| 10 | ovex 7420 | . . . . . . 7 ⊢ (𝑥(Sect‘𝐶)𝑦) ∈ V | |
| 11 | 10 | inex1 5272 | . . . . . 6 ⊢ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V |
| 12 | 9, 11 | fnmpoi 8049 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵) |
| 13 | invfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 14 | eqid 2729 | . . . . . . 7 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 15 | 13, 5, 1, 14 | invffval 17720 | . . . . . 6 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))) |
| 16 | 15 | fneq1d 6611 | . . . . 5 ⊢ (𝜑 → (𝑁 Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵))) |
| 17 | 12, 16 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝑁 Fn (𝐵 × 𝐵)) |
| 18 | invss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 19 | invss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | 18, 19 | opelxpd 5677 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 21 | fvco2 6958 | . . . 4 ⊢ ((𝑁 Fn (𝐵 × 𝐵) ∧ 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉))) | |
| 22 | 17, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉))) |
| 23 | df-ov 7390 | . . 3 ⊢ (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) | |
| 24 | ovex 7420 | . . . . 5 ⊢ (𝑋𝑁𝑌) ∈ V | |
| 25 | dmeq 5867 | . . . . . 6 ⊢ (𝑧 = (𝑋𝑁𝑌) → dom 𝑧 = dom (𝑋𝑁𝑌)) | |
| 26 | eqid 2729 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ dom 𝑧) = (𝑧 ∈ V ↦ dom 𝑧) | |
| 27 | 24 | dmex 7885 | . . . . . 6 ⊢ dom (𝑋𝑁𝑌) ∈ V |
| 28 | 25, 26, 27 | fvmpt 6968 | . . . . 5 ⊢ ((𝑋𝑁𝑌) ∈ V → ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌)) |
| 29 | 24, 28 | ax-mp 5 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌) |
| 30 | df-ov 7390 | . . . . 5 ⊢ (𝑋𝑁𝑌) = (𝑁‘〈𝑋, 𝑌〉) | |
| 31 | 30 | fveq2i 6861 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉)) |
| 32 | 29, 31 | eqtr3i 2754 | . . 3 ⊢ dom (𝑋𝑁𝑌) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉)) |
| 33 | 22, 23, 32 | 3eqtr4g 2789 | . 2 ⊢ (𝜑 → (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = dom (𝑋𝑁𝑌)) |
| 34 | 8, 33 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 〈cop 4595 ↦ cmpt 5188 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ∘ ccom 5642 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 Basecbs 17179 Catccat 17625 Sectcsect 17706 Invcinv 17707 Isociso 17708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-inv 17710 df-iso 17711 |
| This theorem is referenced by: inviso1 17728 invf 17730 invco 17733 dfiso2 17734 isohom 17738 oppciso 17743 cicsym 17766 ffthiso 17893 fuciso 17940 setciso 18053 catciso 18073 rngciso 20547 ringciso 20581 rngcisoALTV 48265 ringcisoALTV 48299 isofval2 49021 isoval2 49024 isopropdlem 49029 |
| Copyright terms: Public domain | W3C validator |