MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoval Structured version   Visualization version   GIF version

Theorem isoval 16893
Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 21-May-2020.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
isoval (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))

Proof of Theorem isoval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
2 isofval 16885 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)))
31, 2syl 17 . . . 4 (𝜑 → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)))
4 isoval.n . . . 4 𝐼 = (Iso‘𝐶)
5 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
65coeq2i 5581 . . . 4 ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))
73, 4, 63eqtr4g 2839 . . 3 (𝜑𝐼 = ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁))
87oveqd 6993 . 2 (𝜑 → (𝑋𝐼𝑌) = (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌))
9 eqid 2778 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
10 ovex 7008 . . . . . . 7 (𝑥(Sect‘𝐶)𝑦) ∈ V
1110inex1 5078 . . . . . 6 ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V
129, 11fnmpoi 7576 . . . . 5 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵)
13 invfval.b . . . . . . 7 𝐵 = (Base‘𝐶)
14 invfval.x . . . . . . 7 (𝜑𝑋𝐵)
15 invfval.y . . . . . . 7 (𝜑𝑌𝐵)
16 eqid 2778 . . . . . . 7 (Sect‘𝐶) = (Sect‘𝐶)
1713, 5, 1, 14, 15, 16invffval 16886 . . . . . 6 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
1817fneq1d 6279 . . . . 5 (𝜑 → (𝑁 Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵)))
1912, 18mpbiri 250 . . . 4 (𝜑𝑁 Fn (𝐵 × 𝐵))
2014, 15opelxpd 5445 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
21 fvco2 6586 . . . 4 ((𝑁 Fn (𝐵 × 𝐵) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘⟨𝑋, 𝑌⟩) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩)))
2219, 20, 21syl2anc 576 . . 3 (𝜑 → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘⟨𝑋, 𝑌⟩) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩)))
23 df-ov 6979 . . 3 (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘⟨𝑋, 𝑌⟩)
24 ovex 7008 . . . . 5 (𝑋𝑁𝑌) ∈ V
25 dmeq 5622 . . . . . 6 (𝑧 = (𝑋𝑁𝑌) → dom 𝑧 = dom (𝑋𝑁𝑌))
26 eqid 2778 . . . . . 6 (𝑧 ∈ V ↦ dom 𝑧) = (𝑧 ∈ V ↦ dom 𝑧)
2724dmex 7431 . . . . . 6 dom (𝑋𝑁𝑌) ∈ V
2825, 26, 27fvmpt 6595 . . . . 5 ((𝑋𝑁𝑌) ∈ V → ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌))
2924, 28ax-mp 5 . . . 4 ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌)
30 df-ov 6979 . . . . 5 (𝑋𝑁𝑌) = (𝑁‘⟨𝑋, 𝑌⟩)
3130fveq2i 6502 . . . 4 ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩))
3229, 31eqtr3i 2804 . . 3 dom (𝑋𝑁𝑌) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩))
3322, 23, 323eqtr4g 2839 . 2 (𝜑 → (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = dom (𝑋𝑁𝑌))
348, 33eqtrd 2814 1 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  Vcvv 3415  cin 3828  cop 4447  cmpt 5008   × cxp 5405  ccnv 5406  dom cdm 5407  ccom 5411   Fn wfn 6183  cfv 6188  (class class class)co 6976  cmpo 6978  Basecbs 16339  Catccat 16793  Sectcsect 16872  Invcinv 16873  Isociso 16874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-inv 16876  df-iso 16877
This theorem is referenced by:  inviso1  16894  invf  16896  invco  16899  dfiso2  16900  isohom  16904  oppciso  16909  cicsym  16932  ffthiso  17057  fuciso  17103  setciso  17209  catciso  17225  rngciso  43623  rngcisoALTV  43635  ringciso  43674  ringcisoALTV  43698
  Copyright terms: Public domain W3C validator