MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoval Structured version   Visualization version   GIF version

Theorem isoval 17648
Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 21-May-2020.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
isoval (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))

Proof of Theorem isoval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
2 isofval 17640 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)))
31, 2syl 17 . . . 4 (𝜑 → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)))
4 isoval.n . . . 4 𝐼 = (Iso‘𝐶)
5 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
65coeq2i 5816 . . . 4 ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))
73, 4, 63eqtr4g 2801 . . 3 (𝜑𝐼 = ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁))
87oveqd 7374 . 2 (𝜑 → (𝑋𝐼𝑌) = (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌))
9 eqid 2736 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
10 ovex 7390 . . . . . . 7 (𝑥(Sect‘𝐶)𝑦) ∈ V
1110inex1 5274 . . . . . 6 ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V
129, 11fnmpoi 8002 . . . . 5 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵)
13 invfval.b . . . . . . 7 𝐵 = (Base‘𝐶)
14 invfval.x . . . . . . 7 (𝜑𝑋𝐵)
15 invfval.y . . . . . . 7 (𝜑𝑌𝐵)
16 eqid 2736 . . . . . . 7 (Sect‘𝐶) = (Sect‘𝐶)
1713, 5, 1, 14, 15, 16invffval 17641 . . . . . 6 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
1817fneq1d 6595 . . . . 5 (𝜑 → (𝑁 Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵)))
1912, 18mpbiri 257 . . . 4 (𝜑𝑁 Fn (𝐵 × 𝐵))
2014, 15opelxpd 5671 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
21 fvco2 6938 . . . 4 ((𝑁 Fn (𝐵 × 𝐵) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘⟨𝑋, 𝑌⟩) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩)))
2219, 20, 21syl2anc 584 . . 3 (𝜑 → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘⟨𝑋, 𝑌⟩) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩)))
23 df-ov 7360 . . 3 (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘⟨𝑋, 𝑌⟩)
24 ovex 7390 . . . . 5 (𝑋𝑁𝑌) ∈ V
25 dmeq 5859 . . . . . 6 (𝑧 = (𝑋𝑁𝑌) → dom 𝑧 = dom (𝑋𝑁𝑌))
26 eqid 2736 . . . . . 6 (𝑧 ∈ V ↦ dom 𝑧) = (𝑧 ∈ V ↦ dom 𝑧)
2724dmex 7848 . . . . . 6 dom (𝑋𝑁𝑌) ∈ V
2825, 26, 27fvmpt 6948 . . . . 5 ((𝑋𝑁𝑌) ∈ V → ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌))
2924, 28ax-mp 5 . . . 4 ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌)
30 df-ov 7360 . . . . 5 (𝑋𝑁𝑌) = (𝑁‘⟨𝑋, 𝑌⟩)
3130fveq2i 6845 . . . 4 ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩))
3229, 31eqtr3i 2766 . . 3 dom (𝑋𝑁𝑌) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘⟨𝑋, 𝑌⟩))
3322, 23, 323eqtr4g 2801 . 2 (𝜑 → (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = dom (𝑋𝑁𝑌))
348, 33eqtrd 2776 1 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3445  cin 3909  cop 4592  cmpt 5188   × cxp 5631  ccnv 5632  dom cdm 5633  ccom 5637   Fn wfn 6491  cfv 6496  (class class class)co 7357  cmpo 7359  Basecbs 17083  Catccat 17544  Sectcsect 17627  Invcinv 17628  Isociso 17629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-inv 17631  df-iso 17632
This theorem is referenced by:  inviso1  17649  invf  17651  invco  17654  dfiso2  17655  isohom  17659  oppciso  17664  cicsym  17687  ffthiso  17816  fuciso  17864  setciso  17977  catciso  17997  rngciso  46270  rngcisoALTV  46282  ringciso  46321  ringcisoALTV  46345
  Copyright terms: Public domain W3C validator