| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoval | Structured version Visualization version GIF version | ||
| Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 21-May-2020.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isoval | ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isofval 17672 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))) |
| 4 | isoval.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 5 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 6 | 5 | coeq2i 5806 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)) |
| 7 | 3, 4, 6 | 3eqtr4g 2793 | . . 3 ⊢ (𝜑 → 𝐼 = ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)) |
| 8 | 7 | oveqd 7372 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) = (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌)) |
| 9 | eqid 2733 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) | |
| 10 | ovex 7388 | . . . . . . 7 ⊢ (𝑥(Sect‘𝐶)𝑦) ∈ V | |
| 11 | 10 | inex1 5259 | . . . . . 6 ⊢ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V |
| 12 | 9, 11 | fnmpoi 8011 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵) |
| 13 | invfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 14 | eqid 2733 | . . . . . . 7 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 15 | 13, 5, 1, 14 | invffval 17673 | . . . . . 6 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))) |
| 16 | 15 | fneq1d 6582 | . . . . 5 ⊢ (𝜑 → (𝑁 Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵))) |
| 17 | 12, 16 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝑁 Fn (𝐵 × 𝐵)) |
| 18 | invss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 19 | invss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | 18, 19 | opelxpd 5660 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 21 | fvco2 6928 | . . . 4 ⊢ ((𝑁 Fn (𝐵 × 𝐵) ∧ 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉))) | |
| 22 | 17, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉))) |
| 23 | df-ov 7358 | . . 3 ⊢ (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) | |
| 24 | ovex 7388 | . . . . 5 ⊢ (𝑋𝑁𝑌) ∈ V | |
| 25 | dmeq 5849 | . . . . . 6 ⊢ (𝑧 = (𝑋𝑁𝑌) → dom 𝑧 = dom (𝑋𝑁𝑌)) | |
| 26 | eqid 2733 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ dom 𝑧) = (𝑧 ∈ V ↦ dom 𝑧) | |
| 27 | 24 | dmex 7848 | . . . . . 6 ⊢ dom (𝑋𝑁𝑌) ∈ V |
| 28 | 25, 26, 27 | fvmpt 6938 | . . . . 5 ⊢ ((𝑋𝑁𝑌) ∈ V → ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌)) |
| 29 | 24, 28 | ax-mp 5 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌) |
| 30 | df-ov 7358 | . . . . 5 ⊢ (𝑋𝑁𝑌) = (𝑁‘〈𝑋, 𝑌〉) | |
| 31 | 30 | fveq2i 6834 | . . . 4 ⊢ ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉)) |
| 32 | 29, 31 | eqtr3i 2758 | . . 3 ⊢ dom (𝑋𝑁𝑌) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉)) |
| 33 | 22, 23, 32 | 3eqtr4g 2793 | . 2 ⊢ (𝜑 → (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = dom (𝑋𝑁𝑌)) |
| 34 | 8, 33 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 〈cop 4583 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 dom cdm 5621 ∘ ccom 5625 Fn wfn 6484 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 Basecbs 17127 Catccat 17578 Sectcsect 17659 Invcinv 17660 Isociso 17661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-inv 17663 df-iso 17664 |
| This theorem is referenced by: inviso1 17681 invf 17683 invco 17686 dfiso2 17687 isohom 17691 oppciso 17696 cicsym 17719 ffthiso 17846 fuciso 17893 setciso 18006 catciso 18026 rngciso 20562 ringciso 20596 rngcisoALTV 48439 ringcisoALTV 48473 isofval2 49193 isoval2 49196 isopropdlem 49201 |
| Copyright terms: Public domain | W3C validator |