|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hphl | Structured version Visualization version GIF version | ||
| Description: If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| hpgid.p | ⊢ 𝑃 = (Base‘𝐺) | 
| hpgid.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| hpgid.l | ⊢ 𝐿 = (LineG‘𝐺) | 
| hpgid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| hpgid.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | 
| hpgid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| hpgid.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | 
| hphl.k | ⊢ 𝐾 = (hlG‘𝐺) | 
| hphl.a | ⊢ (𝜑 → 𝐴 ∈ 𝐷) | 
| hphl.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| hphl.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| hphl.1 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | 
| hphl.2 | ⊢ (𝜑 → 𝐵(𝐾‘𝐴)𝐶) | 
| Ref | Expression | 
|---|---|
| hphl | ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hphl.2 | . 2 ⊢ (𝜑 → 𝐵(𝐾‘𝐴)𝐶) | |
| 2 | hphl.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | |
| 3 | hpgid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | hpgid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | hpgid.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | hpgid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | hpgid.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 8 | hphl.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | hpgid.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 10 | hphl.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 11 | hphl.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 12 | hpgid.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 13 | hphl.k | . . . . . 6 ⊢ 𝐾 = (hlG‘𝐺) | |
| 14 | 3, 4, 13, 8, 10, 12, 6, 5, 1 | hlln 28616 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐿𝐴)) | 
| 15 | 14 | orcd 873 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴)) | 
| 16 | 3, 5, 4, 6, 10, 12, 8, 15 | colrot2 28569 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) | 
| 17 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 13 | colhp 28779 | . 2 ⊢ (𝜑 → (𝐵((hpG‘𝐺)‘𝐷)𝐶 ↔ (𝐵(𝐾‘𝐴)𝐶 ∧ ¬ 𝐵 ∈ 𝐷))) | 
| 18 | 1, 2, 17 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ∖ cdif 3947 class class class wbr 5142 {copab 5204 ran crn 5685 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 TarskiGcstrkg 28436 Itvcitv 28442 LineGclng 28443 hlGchlg 28609 hpGchpg 28766 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-oadd 8511 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-xnn0 12602 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-concat 14610 df-s1 14635 df-s2 14888 df-s3 14889 df-trkgc 28457 df-trkgb 28458 df-trkgcb 28459 df-trkgld 28461 df-trkg 28462 df-cgrg 28520 df-leg 28592 df-hlg 28610 df-mir 28662 df-rag 28703 df-perpg 28705 df-hpg 28767 | 
| This theorem is referenced by: trgcopy 28813 acopyeu 28843 tgasa1 28867 | 
| Copyright terms: Public domain | W3C validator |