| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hphl | Structured version Visualization version GIF version | ||
| Description: If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
| Ref | Expression |
|---|---|
| hpgid.p | ⊢ 𝑃 = (Base‘𝐺) |
| hpgid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| hpgid.l | ⊢ 𝐿 = (LineG‘𝐺) |
| hpgid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hpgid.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| hpgid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| hpgid.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| hphl.k | ⊢ 𝐾 = (hlG‘𝐺) |
| hphl.a | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| hphl.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| hphl.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hphl.1 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
| hphl.2 | ⊢ (𝜑 → 𝐵(𝐾‘𝐴)𝐶) |
| Ref | Expression |
|---|---|
| hphl | ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hphl.2 | . 2 ⊢ (𝜑 → 𝐵(𝐾‘𝐴)𝐶) | |
| 2 | hphl.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | |
| 3 | hpgid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | hpgid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | hpgid.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | hpgid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | hpgid.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 8 | hphl.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | hpgid.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 10 | hphl.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 11 | hphl.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 12 | hpgid.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 13 | hphl.k | . . . . . 6 ⊢ 𝐾 = (hlG‘𝐺) | |
| 14 | 3, 4, 13, 8, 10, 12, 6, 5, 1 | hlln 28591 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐿𝐴)) |
| 15 | 14 | orcd 873 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴)) |
| 16 | 3, 5, 4, 6, 10, 12, 8, 15 | colrot2 28544 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
| 17 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 13 | colhp 28754 | . 2 ⊢ (𝜑 → (𝐵((hpG‘𝐺)‘𝐷)𝐶 ↔ (𝐵(𝐾‘𝐴)𝐶 ∧ ¬ 𝐵 ∈ 𝐷))) |
| 18 | 1, 2, 17 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∖ cdif 3928 class class class wbr 5124 {copab 5186 ran crn 5660 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 hlGchlg 28584 hpGchpg 28741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-s2 14872 df-s3 14873 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkgld 28436 df-trkg 28437 df-cgrg 28495 df-leg 28567 df-hlg 28585 df-mir 28637 df-rag 28678 df-perpg 28680 df-hpg 28742 |
| This theorem is referenced by: trgcopy 28788 acopyeu 28818 tgasa1 28842 |
| Copyright terms: Public domain | W3C validator |