| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hphl | Structured version Visualization version GIF version | ||
| Description: If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
| Ref | Expression |
|---|---|
| hpgid.p | ⊢ 𝑃 = (Base‘𝐺) |
| hpgid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| hpgid.l | ⊢ 𝐿 = (LineG‘𝐺) |
| hpgid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hpgid.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| hpgid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| hpgid.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| hphl.k | ⊢ 𝐾 = (hlG‘𝐺) |
| hphl.a | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| hphl.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| hphl.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hphl.1 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
| hphl.2 | ⊢ (𝜑 → 𝐵(𝐾‘𝐴)𝐶) |
| Ref | Expression |
|---|---|
| hphl | ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hphl.2 | . 2 ⊢ (𝜑 → 𝐵(𝐾‘𝐴)𝐶) | |
| 2 | hphl.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | |
| 3 | hpgid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | hpgid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | hpgid.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | hpgid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | hpgid.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 8 | hphl.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | hpgid.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 10 | hphl.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 11 | hphl.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 12 | hpgid.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 13 | hphl.k | . . . . . 6 ⊢ 𝐾 = (hlG‘𝐺) | |
| 14 | 3, 4, 13, 8, 10, 12, 6, 5, 1 | hlln 28534 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐿𝐴)) |
| 15 | 14 | orcd 873 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴)) |
| 16 | 3, 5, 4, 6, 10, 12, 8, 15 | colrot2 28487 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
| 17 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 13 | colhp 28697 | . 2 ⊢ (𝜑 → (𝐵((hpG‘𝐺)‘𝐷)𝐶 ↔ (𝐵(𝐾‘𝐴)𝐶 ∧ ¬ 𝐵 ∈ 𝐷))) |
| 18 | 1, 2, 17 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3911 class class class wbr 5107 {copab 5169 ran crn 5639 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 TarskiGcstrkg 28354 Itvcitv 28360 LineGclng 28361 hlGchlg 28527 hpGchpg 28684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-trkgc 28375 df-trkgb 28376 df-trkgcb 28377 df-trkgld 28379 df-trkg 28380 df-cgrg 28438 df-leg 28510 df-hlg 28528 df-mir 28580 df-rag 28621 df-perpg 28623 df-hpg 28685 |
| This theorem is referenced by: trgcopy 28731 acopyeu 28761 tgasa1 28785 |
| Copyright terms: Public domain | W3C validator |