MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hphl Structured version   Visualization version   GIF version

Theorem hphl 28755
Description: If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hphl.k 𝐾 = (hlG‘𝐺)
hphl.a (𝜑𝐴𝐷)
hphl.b (𝜑𝐵𝑃)
hphl.c (𝜑𝐶𝑃)
hphl.1 (𝜑 → ¬ 𝐵𝐷)
hphl.2 (𝜑𝐵(𝐾𝐴)𝐶)
Assertion
Ref Expression
hphl (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐾(𝑡,𝑎,𝑏)

Proof of Theorem hphl
StepHypRef Expression
1 hphl.2 . 2 (𝜑𝐵(𝐾𝐴)𝐶)
2 hphl.1 . 2 (𝜑 → ¬ 𝐵𝐷)
3 hpgid.p . . 3 𝑃 = (Base‘𝐺)
4 hpgid.i . . 3 𝐼 = (Itv‘𝐺)
5 hpgid.l . . 3 𝐿 = (LineG‘𝐺)
6 hpgid.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 hpgid.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
8 hphl.b . . 3 (𝜑𝐵𝑃)
9 hpgid.o . . 3 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
10 hphl.c . . 3 (𝜑𝐶𝑃)
11 hphl.a . . 3 (𝜑𝐴𝐷)
12 hpgid.a . . . 4 (𝜑𝐴𝑃)
13 hphl.k . . . . . 6 𝐾 = (hlG‘𝐺)
143, 4, 13, 8, 10, 12, 6, 5, 1hlln 28591 . . . . 5 (𝜑𝐵 ∈ (𝐶𝐿𝐴))
1514orcd 873 . . . 4 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
163, 5, 4, 6, 10, 12, 8, 15colrot2 28544 . . 3 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
173, 4, 5, 6, 7, 8, 9, 10, 11, 16, 13colhp 28754 . 2 (𝜑 → (𝐵((hpG‘𝐺)‘𝐷)𝐶 ↔ (𝐵(𝐾𝐴)𝐶 ∧ ¬ 𝐵𝐷)))
181, 2, 17mpbir2and 713 1 (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  cdif 3928   class class class wbr 5124  {copab 5186  ran crn 5660  cfv 6536  (class class class)co 7410  Basecbs 17233  TarskiGcstrkg 28411  Itvcitv 28417  LineGclng 28418  hlGchlg 28584  hpGchpg 28741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-s2 14872  df-s3 14873  df-trkgc 28432  df-trkgb 28433  df-trkgcb 28434  df-trkgld 28436  df-trkg 28437  df-cgrg 28495  df-leg 28567  df-hlg 28585  df-mir 28637  df-rag 28678  df-perpg 28680  df-hpg 28742
This theorem is referenced by:  trgcopy  28788  acopyeu  28818  tgasa1  28842
  Copyright terms: Public domain W3C validator