| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constcof | Structured version Visualization version GIF version | ||
| Description: Composition with a constant function. See also fcoconst 7067. (Contributed by Thierry Arnoux, 11-Jan-2026.) |
| Ref | Expression |
|---|---|
| constcof.1 | ⊢ (𝜑 → 𝐹:𝑋⟶𝐼) |
| constcof.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| constcof | ⊢ (𝜑 → ((𝐼 × {𝑌}) ∘ 𝐹) = (𝑋 × {𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constcof.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 2 | fnconstg 6711 | . . . 4 ⊢ (𝑌 ∈ 𝑉 → (𝐼 × {𝑌}) Fn 𝐼) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 × {𝑌}) Fn 𝐼) |
| 4 | constcof.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝐼) | |
| 5 | fnfco 6688 | . . 3 ⊢ (((𝐼 × {𝑌}) Fn 𝐼 ∧ 𝐹:𝑋⟶𝐼) → ((𝐼 × {𝑌}) ∘ 𝐹) Fn 𝑋) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐼 × {𝑌}) ∘ 𝐹) Fn 𝑋) |
| 7 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶𝐼) |
| 8 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 9 | 7, 8 | fvco3d 6922 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐼 × {𝑌}) ∘ 𝐹)‘𝑥) = ((𝐼 × {𝑌})‘(𝐹‘𝑥))) |
| 10 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑌 ∈ 𝑉) |
| 11 | 4 | ffvelcdmda 7017 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ 𝐼) |
| 12 | fvconst2g 7136 | . . . 4 ⊢ ((𝑌 ∈ 𝑉 ∧ (𝐹‘𝑥) ∈ 𝐼) → ((𝐼 × {𝑌})‘(𝐹‘𝑥)) = 𝑌) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐼 × {𝑌})‘(𝐹‘𝑥)) = 𝑌) |
| 14 | 9, 13 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐼 × {𝑌}) ∘ 𝐹)‘𝑥) = 𝑌) |
| 15 | 6, 14 | fconst7v 32603 | 1 ⊢ (𝜑 → ((𝐼 × {𝑌}) ∘ 𝐹) = (𝑋 × {𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 × cxp 5612 ∘ ccom 5618 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: mplvrpmrhm 33577 |
| Copyright terms: Public domain | W3C validator |