Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constcof Structured version   Visualization version   GIF version

Theorem constcof 32604
Description: Composition with a constant function. See also fcoconst 7067. (Contributed by Thierry Arnoux, 11-Jan-2026.)
Hypotheses
Ref Expression
constcof.1 (𝜑𝐹:𝑋𝐼)
constcof.2 (𝜑𝑌𝑉)
Assertion
Ref Expression
constcof (𝜑 → ((𝐼 × {𝑌}) ∘ 𝐹) = (𝑋 × {𝑌}))

Proof of Theorem constcof
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 constcof.2 . . . 4 (𝜑𝑌𝑉)
2 fnconstg 6711 . . . 4 (𝑌𝑉 → (𝐼 × {𝑌}) Fn 𝐼)
31, 2syl 17 . . 3 (𝜑 → (𝐼 × {𝑌}) Fn 𝐼)
4 constcof.1 . . 3 (𝜑𝐹:𝑋𝐼)
5 fnfco 6688 . . 3 (((𝐼 × {𝑌}) Fn 𝐼𝐹:𝑋𝐼) → ((𝐼 × {𝑌}) ∘ 𝐹) Fn 𝑋)
63, 4, 5syl2anc 584 . 2 (𝜑 → ((𝐼 × {𝑌}) ∘ 𝐹) Fn 𝑋)
74adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋𝐼)
8 simpr 484 . . . 4 ((𝜑𝑥𝑋) → 𝑥𝑋)
97, 8fvco3d 6922 . . 3 ((𝜑𝑥𝑋) → (((𝐼 × {𝑌}) ∘ 𝐹)‘𝑥) = ((𝐼 × {𝑌})‘(𝐹𝑥)))
101adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝑌𝑉)
114ffvelcdmda 7017 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ 𝐼)
12 fvconst2g 7136 . . . 4 ((𝑌𝑉 ∧ (𝐹𝑥) ∈ 𝐼) → ((𝐼 × {𝑌})‘(𝐹𝑥)) = 𝑌)
1310, 11, 12syl2anc 584 . . 3 ((𝜑𝑥𝑋) → ((𝐼 × {𝑌})‘(𝐹𝑥)) = 𝑌)
149, 13eqtrd 2766 . 2 ((𝜑𝑥𝑋) → (((𝐼 × {𝑌}) ∘ 𝐹)‘𝑥) = 𝑌)
156, 14fconst7v 32603 1 (𝜑 → ((𝐼 × {𝑌}) ∘ 𝐹) = (𝑋 × {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4573   × cxp 5612  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  mplvrpmrhm  33577
  Copyright terms: Public domain W3C validator