Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constcof Structured version   Visualization version   GIF version

Theorem constcof 32566
Description: Composition with a constant function. See also fcoconst 7068. (Contributed by Thierry Arnoux, 11-Jan-2026.)
Hypotheses
Ref Expression
constcof.1 (𝜑𝐹:𝑋𝐼)
constcof.2 (𝜑𝑌𝑉)
Assertion
Ref Expression
constcof (𝜑 → ((𝐼 × {𝑌}) ∘ 𝐹) = (𝑋 × {𝑌}))

Proof of Theorem constcof
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 constcof.2 . . . 4 (𝜑𝑌𝑉)
2 fnconstg 6712 . . . 4 (𝑌𝑉 → (𝐼 × {𝑌}) Fn 𝐼)
31, 2syl 17 . . 3 (𝜑 → (𝐼 × {𝑌}) Fn 𝐼)
4 constcof.1 . . 3 (𝜑𝐹:𝑋𝐼)
5 fnfco 6689 . . 3 (((𝐼 × {𝑌}) Fn 𝐼𝐹:𝑋𝐼) → ((𝐼 × {𝑌}) ∘ 𝐹) Fn 𝑋)
63, 4, 5syl2anc 584 . 2 (𝜑 → ((𝐼 × {𝑌}) ∘ 𝐹) Fn 𝑋)
74adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋𝐼)
8 simpr 484 . . . 4 ((𝜑𝑥𝑋) → 𝑥𝑋)
97, 8fvco3d 6923 . . 3 ((𝜑𝑥𝑋) → (((𝐼 × {𝑌}) ∘ 𝐹)‘𝑥) = ((𝐼 × {𝑌})‘(𝐹𝑥)))
101adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝑌𝑉)
114ffvelcdmda 7018 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ 𝐼)
12 fvconst2g 7138 . . . 4 ((𝑌𝑉 ∧ (𝐹𝑥) ∈ 𝐼) → ((𝐼 × {𝑌})‘(𝐹𝑥)) = 𝑌)
1310, 11, 12syl2anc 584 . . 3 ((𝜑𝑥𝑋) → ((𝐼 × {𝑌})‘(𝐹𝑥)) = 𝑌)
149, 13eqtrd 2764 . 2 ((𝜑𝑥𝑋) → (((𝐼 × {𝑌}) ∘ 𝐹)‘𝑥) = 𝑌)
156, 14fconst7v 32565 1 (𝜑 → ((𝐼 × {𝑌}) ∘ 𝐹) = (𝑋 × {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4577   × cxp 5617  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator