Proof of Theorem fconst7v
| Step | Hyp | Ref
| Expression |
| 1 | | 0xp 5722 |
. . . 4
⊢ (∅
× {𝐵}) =
∅ |
| 2 | 1 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → (∅ × {𝐵}) = ∅) |
| 3 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐴 = ∅) |
| 4 | 3 | xpeq1d 5652 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝐴 × {𝐵}) = (∅ × {𝐵})) |
| 5 | | fconst7v.f |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐹 Fn 𝐴) |
| 7 | | fneq2 6578 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝐹 Fn 𝐴 ↔ 𝐹 Fn ∅)) |
| 8 | 7 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝐹 Fn 𝐴 ↔ 𝐹 Fn ∅)) |
| 9 | 6, 8 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐹 Fn ∅) |
| 10 | | fn0 6617 |
. . . 4
⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| 11 | 9, 10 | sylib 218 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐹 = ∅) |
| 12 | 2, 4, 11 | 3eqtr4rd 2775 |
. 2
⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐹 = (𝐴 × {𝐵})) |
| 13 | | fconst7v.e |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| 14 | | fvexd 6841 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
| 15 | 13, 14 | eqeltrrd 2829 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
| 16 | | snidg 4614 |
. . . . . . . 8
⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐵}) |
| 17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝐵}) |
| 18 | 13, 17 | eqeltrd 2828 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ {𝐵}) |
| 19 | 18 | ralrimiva 3121 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵}) |
| 20 | | nfcv 2891 |
. . . . . 6
⊢
Ⅎ𝑥𝐴 |
| 21 | | nfcv 2891 |
. . . . . 6
⊢
Ⅎ𝑥{𝐵} |
| 22 | | nfcv 2891 |
. . . . . 6
⊢
Ⅎ𝑥𝐹 |
| 23 | 20, 21, 22 | ffnfvf 7058 |
. . . . 5
⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵})) |
| 24 | 5, 19, 23 | sylanbrc 583 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶{𝐵}) |
| 25 | 24 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐹:𝐴⟶{𝐵}) |
| 26 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) |
| 27 | 15 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
| 28 | 26, 27 | n0limd 32435 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ V) |
| 29 | | fconst2g 7143 |
. . . 4
⊢ (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
| 30 | 28, 29 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
| 31 | 25, 30 | mpbid 232 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐹 = (𝐴 × {𝐵})) |
| 32 | | exmidne 2935 |
. . 3
⊢ (𝐴 = ∅ ∨ 𝐴 ≠ ∅) |
| 33 | 32 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
| 34 | 12, 31, 33 | mpjaodan 960 |
1
⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |