Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fconst7v Structured version   Visualization version   GIF version

Theorem fconst7v 32595
Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) Removed hyphotheses as suggested by SN (Revised by Thierry Arnoux, 10-Jan-2026.)
Hypotheses
Ref Expression
fconst7v.f (𝜑𝐹 Fn 𝐴)
fconst7v.e ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Assertion
Ref Expression
fconst7v (𝜑𝐹 = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem fconst7v
StepHypRef Expression
1 0xp 5710 . . . 4 (∅ × {𝐵}) = ∅
21a1i 11 . . 3 ((𝜑𝐴 = ∅) → (∅ × {𝐵}) = ∅)
3 simpr 484 . . . 4 ((𝜑𝐴 = ∅) → 𝐴 = ∅)
43xpeq1d 5640 . . 3 ((𝜑𝐴 = ∅) → (𝐴 × {𝐵}) = (∅ × {𝐵}))
5 fconst7v.f . . . . . 6 (𝜑𝐹 Fn 𝐴)
65adantr 480 . . . . 5 ((𝜑𝐴 = ∅) → 𝐹 Fn 𝐴)
7 fneq2 6568 . . . . . 6 (𝐴 = ∅ → (𝐹 Fn 𝐴𝐹 Fn ∅))
87adantl 481 . . . . 5 ((𝜑𝐴 = ∅) → (𝐹 Fn 𝐴𝐹 Fn ∅))
96, 8mpbid 232 . . . 4 ((𝜑𝐴 = ∅) → 𝐹 Fn ∅)
10 fn0 6607 . . . 4 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
119, 10sylib 218 . . 3 ((𝜑𝐴 = ∅) → 𝐹 = ∅)
122, 4, 113eqtr4rd 2777 . 2 ((𝜑𝐴 = ∅) → 𝐹 = (𝐴 × {𝐵}))
13 fconst7v.e . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
14 fvexd 6832 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ V)
1513, 14eqeltrrd 2832 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
16 snidg 4608 . . . . . . . 8 (𝐵 ∈ V → 𝐵 ∈ {𝐵})
1715, 16syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝐵})
1813, 17eqeltrd 2831 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ {𝐵})
1918ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵})
20 nfcv 2894 . . . . . 6 𝑥𝐴
21 nfcv 2894 . . . . . 6 𝑥{𝐵}
22 nfcv 2894 . . . . . 6 𝑥𝐹
2320, 21, 22ffnfvf 7048 . . . . 5 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵}))
245, 19, 23sylanbrc 583 . . . 4 (𝜑𝐹:𝐴⟶{𝐵})
2524adantr 480 . . 3 ((𝜑𝐴 ≠ ∅) → 𝐹:𝐴⟶{𝐵})
26 simpr 484 . . . . 5 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2715adantlr 715 . . . . 5 (((𝜑𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐵 ∈ V)
2826, 27n0limd 32443 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐵 ∈ V)
29 fconst2g 7132 . . . 4 (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
3028, 29syl 17 . . 3 ((𝜑𝐴 ≠ ∅) → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
3125, 30mpbid 232 . 2 ((𝜑𝐴 ≠ ∅) → 𝐹 = (𝐴 × {𝐵}))
32 exmidne 2938 . . 3 (𝐴 = ∅ ∨ 𝐴 ≠ ∅)
3332a1i 11 . 2 (𝜑 → (𝐴 = ∅ ∨ 𝐴 ≠ ∅))
3412, 31, 33mpjaodan 960 1 (𝜑𝐹 = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  c0 4278  {csn 4571   × cxp 5609   Fn wfn 6471  wf 6472  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484
This theorem is referenced by:  constcof  32596  extdgfialglem2  33698
  Copyright terms: Public domain W3C validator