| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6715 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | 1 | ffnd 6657 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 {csn 4575 × cxp 5617 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fconst2g 7143 ofc1 7644 ofc2 7645 caofid0l 7649 caofid0r 7650 caofid1 7651 caofid2 7652 fnsuppres 8127 fczsupp0 8129 fczfsuppd 9277 brwdom2 9466 cantnf0 9572 ofnegsub 12130 ofsubge0 12131 pwsplusgval 17396 pwsmulrval 17397 pwsvscafval 17400 pwsco1mhm 18742 dprdsubg 19940 pwsmgp 20247 pwssplit1 20995 frlmpwsfi 21691 frlmbas 21694 frlmvscaval 21707 islindf4 21777 psrascl 21917 tmdgsum2 24012 0plef 25601 0pledm 25602 itg1ge0 25615 mbfi1fseqlem5 25648 xrge0f 25660 itg2ge0 25664 itg2addlem 25687 bddibl 25769 dvidlem 25844 rolle 25922 dveq0 25933 dv11cn 25934 tdeglem4 25993 mdeg0 26003 fta1blem 26104 qaa 26259 basellem9 27027 noextendseq 27607 noetainflem4 27680 constcof 32606 fdifsuppconst 32674 elrspunidl 33400 ofcc 34140 ofcof 34141 eulerpartlemt 34405 matunitlindflem1 37676 matunitlindflem2 37677 ptrecube 37680 poimirlem1 37681 poimirlem2 37682 poimirlem3 37683 poimirlem4 37684 poimirlem5 37685 poimirlem6 37686 poimirlem7 37687 poimirlem10 37690 poimirlem11 37691 poimirlem12 37692 poimirlem16 37696 poimirlem17 37697 poimirlem19 37699 poimirlem20 37700 poimirlem22 37702 poimirlem23 37703 poimirlem28 37708 poimirlem29 37709 poimirlem31 37711 poimirlem32 37712 broucube 37714 cnpwstotbnd 37857 eqlkr2 39219 fsuppssind 42711 pwssplit4 43206 mpaaeu 43267 rngunsnply 43286 ofoaid1 43475 ofoaid2 43476 naddcnffo 43481 ofdivrec 44443 dvconstbi 44451 zlmodzxzscm 48481 nelsubclem 49192 aacllem 49926 |
| Copyright terms: Public domain | W3C validator |