| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6765 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | 1 | ffnd 6707 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 {csn 4601 × cxp 5652 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: fconst2g 7195 ofc1 7699 ofc2 7700 caofid0l 7704 caofid0r 7705 caofid1 7706 caofid2 7707 fnsuppres 8190 fczsupp0 8192 fczfsuppd 9398 brwdom2 9587 cantnf0 9689 ofnegsub 12238 ofsubge0 12239 pwsplusgval 17504 pwsmulrval 17505 pwsvscafval 17508 pwsco1mhm 18810 dprdsubg 20007 pwsmgp 20287 pwssplit1 21017 frlmpwsfi 21712 frlmbas 21715 frlmvscaval 21728 islindf4 21798 psrascl 21939 tmdgsum2 24034 0plef 25625 0pledm 25626 itg1ge0 25639 mbfi1fseqlem5 25672 xrge0f 25684 itg2ge0 25688 itg2addlem 25711 bddibl 25793 dvidlem 25868 rolle 25946 dveq0 25957 dv11cn 25958 tdeglem4 26017 mdeg0 26027 fta1blem 26128 qaa 26283 basellem9 27051 noextendseq 27631 noetainflem4 27704 fdifsuppconst 32666 elrspunidl 33443 ofcc 34137 ofcof 34138 eulerpartlemt 34403 matunitlindflem1 37640 matunitlindflem2 37641 ptrecube 37644 poimirlem1 37645 poimirlem2 37646 poimirlem3 37647 poimirlem4 37648 poimirlem5 37649 poimirlem6 37650 poimirlem7 37651 poimirlem10 37654 poimirlem11 37655 poimirlem12 37656 poimirlem16 37660 poimirlem17 37661 poimirlem19 37663 poimirlem20 37664 poimirlem22 37666 poimirlem23 37667 poimirlem28 37672 poimirlem29 37673 poimirlem31 37675 poimirlem32 37676 broucube 37678 cnpwstotbnd 37821 eqlkr2 39118 fsuppssind 42616 pwssplit4 43113 mpaaeu 43174 rngunsnply 43193 ofoaid1 43382 ofoaid2 43383 naddcnffo 43388 ofdivrec 44350 dvconstbi 44358 zlmodzxzscm 48332 nelsubclem 49034 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |