Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
Ref | Expression |
---|---|
fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6551 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | 1 | ffnd 6499 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 {csn 4522 × cxp 5522 Fn wfn 6330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-fun 6337 df-fn 6338 df-f 6339 |
This theorem is referenced by: fconst2g 6956 ofc1 7430 ofc2 7431 caofid0l 7435 caofid0r 7436 caofid1 7437 caofid2 7438 fnsuppres 7865 fczsupp0 7867 fczfsuppd 8884 brwdom2 9070 cantnf0 9171 ofnegsub 11672 ofsubge0 11673 pwsplusgval 16821 pwsmulrval 16822 pwsvscafval 16825 pwsco1mhm 18062 dprdsubg 19214 pwsmgp 19439 pwssplit1 19899 frlmpwsfi 20517 frlmbas 20520 frlmvscaval 20533 islindf4 20603 tmdgsum2 22796 0plef 24372 0pledm 24373 itg1ge0 24386 mbfi1fseqlem5 24419 xrge0f 24431 itg2ge0 24435 itg2addlem 24458 bddibl 24539 dvidlem 24614 rolle 24689 dveq0 24699 dv11cn 24700 tdeglem4 24759 tdeglem4OLD 24760 mdeg0 24770 fta1blem 24868 qaa 25018 basellem9 25773 fdifsuppconst 30547 elrspunidl 31127 ofcc 31593 ofcof 31594 eulerpartlemt 31857 noextendseq 33435 noetainflem4 33508 matunitlindflem1 35333 matunitlindflem2 35334 ptrecube 35337 poimirlem1 35338 poimirlem2 35339 poimirlem3 35340 poimirlem4 35341 poimirlem5 35342 poimirlem6 35343 poimirlem7 35344 poimirlem10 35347 poimirlem11 35348 poimirlem12 35349 poimirlem16 35353 poimirlem17 35354 poimirlem19 35356 poimirlem20 35357 poimirlem22 35359 poimirlem23 35360 poimirlem28 35365 poimirlem29 35366 poimirlem31 35368 poimirlem32 35369 broucube 35371 cnpwstotbnd 35515 eqlkr2 36676 fsuppssind 39787 mhphf 39790 pwssplit4 40406 mpaaeu 40467 rngunsnply 40490 ofdivrec 41403 dvconstbi 41411 zlmodzxzscm 45126 aacllem 45720 |
Copyright terms: Public domain | W3C validator |