![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
Ref | Expression |
---|---|
fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6330 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | 1 | ffnd 6280 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 {csn 4398 × cxp 5341 Fn wfn 6119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pr 5128 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-fun 6126 df-fn 6127 df-f 6128 |
This theorem is referenced by: fconst2g 6725 ofc1 7181 ofc2 7182 caofid0l 7186 caofid0r 7187 caofid1 7188 caofid2 7189 fnsuppres 7588 fczsupp0 7590 fczfsuppd 8563 brwdom2 8748 cantnf0 8850 ofnegsub 11349 ofsubge0 11350 pwsplusgval 16504 pwsmulrval 16505 pwsvscafval 16508 xpsc0 16574 xpsc1 16575 pwsco1mhm 17724 dprdsubg 18778 pwsmgp 18973 pwssplit1 19419 frlmpwsfi 20460 frlmbas 20463 frlmvscaval 20475 islindf4 20545 tmdgsum2 22271 0plef 23839 0pledm 23840 itg1ge0 23853 mbfi1fseqlem5 23886 xrge0f 23898 itg2ge0 23902 itg2addlem 23925 bddibl 24006 dvidlem 24079 rolle 24153 dveq0 24163 dv11cn 24164 tdeglem4 24220 mdeg0 24230 fta1blem 24328 qaa 24478 basellem9 25229 ofcc 30714 ofcof 30715 eulerpartlemt 30979 noextendseq 32360 matunitlindflem1 33950 matunitlindflem2 33951 ptrecube 33954 poimirlem1 33955 poimirlem2 33956 poimirlem3 33957 poimirlem4 33958 poimirlem5 33959 poimirlem6 33960 poimirlem7 33961 poimirlem10 33964 poimirlem11 33965 poimirlem12 33966 poimirlem16 33970 poimirlem17 33971 poimirlem19 33973 poimirlem20 33974 poimirlem22 33976 poimirlem23 33977 poimirlem28 33982 poimirlem29 33983 poimirlem31 33985 poimirlem32 33986 broucube 33988 cnpwstotbnd 34139 eqlkr2 35176 pwssplit4 38503 mpaaeu 38564 rngunsnply 38587 ofdivrec 39366 dvconstbi 39374 zlmodzxzscm 42983 aacllem 43444 |
Copyright terms: Public domain | W3C validator |