| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6747 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | 1 | ffnd 6689 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4589 × cxp 5636 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fconst2g 7177 ofc1 7681 ofc2 7682 caofid0l 7686 caofid0r 7687 caofid1 7688 caofid2 7689 fnsuppres 8170 fczsupp0 8172 fczfsuppd 9337 brwdom2 9526 cantnf0 9628 ofnegsub 12184 ofsubge0 12185 pwsplusgval 17453 pwsmulrval 17454 pwsvscafval 17457 pwsco1mhm 18759 dprdsubg 19956 pwsmgp 20236 pwssplit1 20966 frlmpwsfi 21661 frlmbas 21664 frlmvscaval 21677 islindf4 21747 psrascl 21888 tmdgsum2 23983 0plef 25573 0pledm 25574 itg1ge0 25587 mbfi1fseqlem5 25620 xrge0f 25632 itg2ge0 25636 itg2addlem 25659 bddibl 25741 dvidlem 25816 rolle 25894 dveq0 25905 dv11cn 25906 tdeglem4 25965 mdeg0 25975 fta1blem 26076 qaa 26231 basellem9 26999 noextendseq 27579 noetainflem4 27652 fdifsuppconst 32612 elrspunidl 33399 ofcc 34096 ofcof 34097 eulerpartlemt 34362 matunitlindflem1 37610 matunitlindflem2 37611 ptrecube 37614 poimirlem1 37615 poimirlem2 37616 poimirlem3 37617 poimirlem4 37618 poimirlem5 37619 poimirlem6 37620 poimirlem7 37621 poimirlem10 37624 poimirlem11 37625 poimirlem12 37626 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem22 37636 poimirlem23 37637 poimirlem28 37642 poimirlem29 37643 poimirlem31 37645 poimirlem32 37646 broucube 37648 cnpwstotbnd 37791 eqlkr2 39093 fsuppssind 42581 pwssplit4 43078 mpaaeu 43139 rngunsnply 43158 ofoaid1 43347 ofoaid2 43348 naddcnffo 43353 ofdivrec 44315 dvconstbi 44323 zlmodzxzscm 48345 nelsubclem 49056 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |