Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
Ref | Expression |
---|---|
fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6645 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | 1 | ffnd 6585 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {csn 4558 × cxp 5578 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: fconst2g 7060 ofc1 7537 ofc2 7538 caofid0l 7542 caofid0r 7543 caofid1 7544 caofid2 7545 fnsuppres 7978 fczsupp0 7980 fczfsuppd 9076 brwdom2 9262 cantnf0 9363 ofnegsub 11901 ofsubge0 11902 pwsplusgval 17118 pwsmulrval 17119 pwsvscafval 17122 pwsco1mhm 18385 dprdsubg 19542 pwsmgp 19772 pwssplit1 20236 frlmpwsfi 20869 frlmbas 20872 frlmvscaval 20885 islindf4 20955 tmdgsum2 23155 0plef 24741 0pledm 24742 itg1ge0 24755 mbfi1fseqlem5 24789 xrge0f 24801 itg2ge0 24805 itg2addlem 24828 bddibl 24909 dvidlem 24984 rolle 25059 dveq0 25069 dv11cn 25070 tdeglem4 25129 tdeglem4OLD 25130 mdeg0 25140 fta1blem 25238 qaa 25388 basellem9 26143 fdifsuppconst 30925 elrspunidl 31508 ofcc 31974 ofcof 31975 eulerpartlemt 32238 noextendseq 33797 noetainflem4 33870 matunitlindflem1 35700 matunitlindflem2 35701 ptrecube 35704 poimirlem1 35705 poimirlem2 35706 poimirlem3 35707 poimirlem4 35708 poimirlem5 35709 poimirlem6 35710 poimirlem7 35711 poimirlem10 35714 poimirlem11 35715 poimirlem12 35716 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem22 35726 poimirlem23 35727 poimirlem28 35732 poimirlem29 35733 poimirlem31 35735 poimirlem32 35736 broucube 35738 cnpwstotbnd 35882 eqlkr2 37041 fsuppssind 40205 mhphf 40208 pwssplit4 40830 mpaaeu 40891 rngunsnply 40914 ofdivrec 41833 dvconstbi 41841 zlmodzxzscm 45581 aacllem 46391 |
Copyright terms: Public domain | W3C validator |