![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
Ref | Expression |
---|---|
fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6795 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | 1 | ffnd 6737 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 {csn 4630 × cxp 5686 Fn wfn 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-fun 6564 df-fn 6565 df-f 6566 |
This theorem is referenced by: fconst2g 7222 ofc1 7724 ofc2 7725 caofid0l 7729 caofid0r 7730 caofid1 7731 caofid2 7732 fnsuppres 8214 fczsupp0 8216 fczfsuppd 9423 brwdom2 9610 cantnf0 9712 ofnegsub 12261 ofsubge0 12262 pwsplusgval 17536 pwsmulrval 17537 pwsvscafval 17540 pwsco1mhm 18857 dprdsubg 20058 pwsmgp 20340 pwssplit1 21075 frlmpwsfi 21789 frlmbas 21792 frlmvscaval 21805 islindf4 21875 psrascl 22016 tmdgsum2 24119 0plef 25720 0pledm 25721 itg1ge0 25734 mbfi1fseqlem5 25768 xrge0f 25780 itg2ge0 25784 itg2addlem 25807 bddibl 25889 dvidlem 25964 rolle 26042 dveq0 26053 dv11cn 26054 tdeglem4 26113 mdeg0 26123 fta1blem 26224 qaa 26379 basellem9 27146 noextendseq 27726 noetainflem4 27799 fdifsuppconst 32703 elrspunidl 33435 ofcc 34086 ofcof 34087 eulerpartlemt 34352 matunitlindflem1 37602 matunitlindflem2 37603 ptrecube 37606 poimirlem1 37607 poimirlem2 37608 poimirlem3 37609 poimirlem4 37610 poimirlem5 37611 poimirlem6 37612 poimirlem7 37613 poimirlem10 37616 poimirlem11 37617 poimirlem12 37618 poimirlem16 37622 poimirlem17 37623 poimirlem19 37625 poimirlem20 37626 poimirlem22 37628 poimirlem23 37629 poimirlem28 37634 poimirlem29 37635 poimirlem31 37637 poimirlem32 37638 broucube 37640 cnpwstotbnd 37783 eqlkr2 39081 fsuppssind 42579 pwssplit4 43077 mpaaeu 43138 rngunsnply 43157 ofoaid1 43347 ofoaid2 43348 naddcnffo 43353 ofdivrec 44321 dvconstbi 44329 zlmodzxzscm 48201 aacllem 49031 |
Copyright terms: Public domain | W3C validator |