| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6715 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | 1 | ffnd 6657 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4579 × cxp 5621 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fconst2g 7143 ofc1 7645 ofc2 7646 caofid0l 7650 caofid0r 7651 caofid1 7652 caofid2 7653 fnsuppres 8131 fczsupp0 8133 fczfsuppd 9295 brwdom2 9484 cantnf0 9590 ofnegsub 12144 ofsubge0 12145 pwsplusgval 17412 pwsmulrval 17413 pwsvscafval 17416 pwsco1mhm 18724 dprdsubg 19923 pwsmgp 20230 pwssplit1 20981 frlmpwsfi 21677 frlmbas 21680 frlmvscaval 21693 islindf4 21763 psrascl 21904 tmdgsum2 23999 0plef 25589 0pledm 25590 itg1ge0 25603 mbfi1fseqlem5 25636 xrge0f 25648 itg2ge0 25652 itg2addlem 25675 bddibl 25757 dvidlem 25832 rolle 25910 dveq0 25921 dv11cn 25922 tdeglem4 25981 mdeg0 25991 fta1blem 26092 qaa 26247 basellem9 27015 noextendseq 27595 noetainflem4 27668 fdifsuppconst 32645 elrspunidl 33375 ofcc 34072 ofcof 34073 eulerpartlemt 34338 matunitlindflem1 37595 matunitlindflem2 37596 ptrecube 37599 poimirlem1 37600 poimirlem2 37601 poimirlem3 37602 poimirlem4 37603 poimirlem5 37604 poimirlem6 37605 poimirlem7 37606 poimirlem10 37609 poimirlem11 37610 poimirlem12 37611 poimirlem16 37615 poimirlem17 37616 poimirlem19 37618 poimirlem20 37619 poimirlem22 37621 poimirlem23 37622 poimirlem28 37627 poimirlem29 37628 poimirlem31 37630 poimirlem32 37631 broucube 37633 cnpwstotbnd 37776 eqlkr2 39078 fsuppssind 42566 pwssplit4 43062 mpaaeu 43123 rngunsnply 43142 ofoaid1 43331 ofoaid2 43332 naddcnffo 43337 ofdivrec 44299 dvconstbi 44307 zlmodzxzscm 48342 nelsubclem 49053 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |