| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6710 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | 1 | ffnd 6652 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {csn 4576 × cxp 5614 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: fconst2g 7137 ofc1 7638 ofc2 7639 caofid0l 7643 caofid0r 7644 caofid1 7645 caofid2 7646 fnsuppres 8121 fczsupp0 8123 fczfsuppd 9270 brwdom2 9459 cantnf0 9565 ofnegsub 12120 ofsubge0 12121 pwsplusgval 17391 pwsmulrval 17392 pwsvscafval 17395 pwsco1mhm 18737 dprdsubg 19936 pwsmgp 20243 pwssplit1 20991 frlmpwsfi 21687 frlmbas 21690 frlmvscaval 21703 islindf4 21773 psrascl 21914 tmdgsum2 24009 0plef 25598 0pledm 25599 itg1ge0 25612 mbfi1fseqlem5 25645 xrge0f 25657 itg2ge0 25661 itg2addlem 25684 bddibl 25766 dvidlem 25841 rolle 25919 dveq0 25930 dv11cn 25931 tdeglem4 25990 mdeg0 26000 fta1blem 26101 qaa 26256 basellem9 27024 noextendseq 27604 noetainflem4 27677 constcof 32599 fdifsuppconst 32665 elrspunidl 33388 ofcc 34114 ofcof 34115 eulerpartlemt 34379 matunitlindflem1 37655 matunitlindflem2 37656 ptrecube 37659 poimirlem1 37660 poimirlem2 37661 poimirlem3 37662 poimirlem4 37663 poimirlem5 37664 poimirlem6 37665 poimirlem7 37666 poimirlem10 37669 poimirlem11 37670 poimirlem12 37671 poimirlem16 37675 poimirlem17 37676 poimirlem19 37678 poimirlem20 37679 poimirlem22 37681 poimirlem23 37682 poimirlem28 37687 poimirlem29 37688 poimirlem31 37690 poimirlem32 37691 broucube 37693 cnpwstotbnd 37836 eqlkr2 39138 fsuppssind 42625 pwssplit4 43121 mpaaeu 43182 rngunsnply 43201 ofoaid1 43390 ofoaid2 43391 naddcnffo 43396 ofdivrec 44358 dvconstbi 44366 zlmodzxzscm 48387 nelsubclem 49098 aacllem 49832 |
| Copyright terms: Public domain | W3C validator |