Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
Ref | Expression |
---|---|
fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6670 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | 1 | ffnd 6610 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 {csn 4562 × cxp 5588 Fn wfn 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-fun 6439 df-fn 6440 df-f 6441 |
This theorem is referenced by: fconst2g 7087 ofc1 7568 ofc2 7569 caofid0l 7573 caofid0r 7574 caofid1 7575 caofid2 7576 fnsuppres 8016 fczsupp0 8018 fczfsuppd 9155 brwdom2 9341 cantnf0 9442 ofnegsub 11980 ofsubge0 11981 pwsplusgval 17210 pwsmulrval 17211 pwsvscafval 17214 pwsco1mhm 18479 dprdsubg 19636 pwsmgp 19866 pwssplit1 20330 frlmpwsfi 20968 frlmbas 20971 frlmvscaval 20984 islindf4 21054 tmdgsum2 23256 0plef 24845 0pledm 24846 itg1ge0 24859 mbfi1fseqlem5 24893 xrge0f 24905 itg2ge0 24909 itg2addlem 24932 bddibl 25013 dvidlem 25088 rolle 25163 dveq0 25173 dv11cn 25174 tdeglem4 25233 tdeglem4OLD 25234 mdeg0 25244 fta1blem 25342 qaa 25492 basellem9 26247 fdifsuppconst 31032 elrspunidl 31615 ofcc 32083 ofcof 32084 eulerpartlemt 32347 noextendseq 33879 noetainflem4 33952 matunitlindflem1 35782 matunitlindflem2 35783 ptrecube 35786 poimirlem1 35787 poimirlem2 35788 poimirlem3 35789 poimirlem4 35790 poimirlem5 35791 poimirlem6 35792 poimirlem7 35793 poimirlem10 35796 poimirlem11 35797 poimirlem12 35798 poimirlem16 35802 poimirlem17 35803 poimirlem19 35805 poimirlem20 35806 poimirlem22 35808 poimirlem23 35809 poimirlem28 35814 poimirlem29 35815 poimirlem31 35817 poimirlem32 35818 broucube 35820 cnpwstotbnd 35964 eqlkr2 37121 fsuppssind 40289 mhphf 40292 pwssplit4 40921 mpaaeu 40982 rngunsnply 41005 ofdivrec 41951 dvconstbi 41959 zlmodzxzscm 45704 aacllem 46516 |
Copyright terms: Public domain | W3C validator |