| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6750 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | 1 | ffnd 6692 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4592 × cxp 5639 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fconst2g 7180 ofc1 7684 ofc2 7685 caofid0l 7689 caofid0r 7690 caofid1 7691 caofid2 7692 fnsuppres 8173 fczsupp0 8175 fczfsuppd 9344 brwdom2 9533 cantnf0 9635 ofnegsub 12191 ofsubge0 12192 pwsplusgval 17460 pwsmulrval 17461 pwsvscafval 17464 pwsco1mhm 18766 dprdsubg 19963 pwsmgp 20243 pwssplit1 20973 frlmpwsfi 21668 frlmbas 21671 frlmvscaval 21684 islindf4 21754 psrascl 21895 tmdgsum2 23990 0plef 25580 0pledm 25581 itg1ge0 25594 mbfi1fseqlem5 25627 xrge0f 25639 itg2ge0 25643 itg2addlem 25666 bddibl 25748 dvidlem 25823 rolle 25901 dveq0 25912 dv11cn 25913 tdeglem4 25972 mdeg0 25982 fta1blem 26083 qaa 26238 basellem9 27006 noextendseq 27586 noetainflem4 27659 fdifsuppconst 32619 elrspunidl 33406 ofcc 34103 ofcof 34104 eulerpartlemt 34369 matunitlindflem1 37617 matunitlindflem2 37618 ptrecube 37621 poimirlem1 37622 poimirlem2 37623 poimirlem3 37624 poimirlem4 37625 poimirlem5 37626 poimirlem6 37627 poimirlem7 37628 poimirlem10 37631 poimirlem11 37632 poimirlem12 37633 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 poimirlem22 37643 poimirlem23 37644 poimirlem28 37649 poimirlem29 37650 poimirlem31 37652 poimirlem32 37653 broucube 37655 cnpwstotbnd 37798 eqlkr2 39100 fsuppssind 42588 pwssplit4 43085 mpaaeu 43146 rngunsnply 43165 ofoaid1 43354 ofoaid2 43355 naddcnffo 43360 ofdivrec 44322 dvconstbi 44330 zlmodzxzscm 48349 nelsubclem 49060 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |