![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpm2mf | Structured version Visualization version GIF version |
Description: The inverse matrix transformation is a function from the constant polynomial matrices to the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
cpm2mf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpm2mf.k | ⊢ 𝐾 = (Base‘𝐴) |
cpm2mf.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpm2mf.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
Ref | Expression |
---|---|
cpm2mf | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm2mf.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2825 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | cpm2mf.k | . . . 4 ⊢ 𝐾 = (Base‘𝐴) | |
4 | simpll 783 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑁 ∈ Fin) | |
5 | simplr 785 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑅 ∈ Ring) | |
6 | eqid 2825 | . . . . . 6 ⊢ (𝑁 Mat (Poly1‘𝑅)) = (𝑁 Mat (Poly1‘𝑅)) | |
7 | eqid 2825 | . . . . . 6 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
8 | eqid 2825 | . . . . . 6 ⊢ (Base‘(𝑁 Mat (Poly1‘𝑅))) = (Base‘(𝑁 Mat (Poly1‘𝑅))) | |
9 | simp2 1171 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
10 | simp3 1172 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
11 | cpm2mf.s | . . . . . . . . 9 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
12 | eqid 2825 | . . . . . . . . 9 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
13 | 11, 12, 6, 8 | cpmatpmat 20892 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
14 | 13 | 3expa 1151 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
15 | 14 | 3ad2ant1 1167 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
16 | 6, 7, 8, 9, 10, 15 | matecld 20606 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑚𝑦) ∈ (Base‘(Poly1‘𝑅))) |
17 | 0nn0 11642 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
18 | eqid 2825 | . . . . . 6 ⊢ (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑚𝑦)) | |
19 | 18, 7, 12, 2 | coe1fvalcl 19949 | . . . . 5 ⊢ (((𝑥𝑚𝑦) ∈ (Base‘(Poly1‘𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅)) |
20 | 16, 17, 19 | sylancl 580 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅)) |
21 | 1, 2, 3, 4, 5, 20 | matbas2d 20603 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) ∈ 𝐾) |
22 | 21 | fmpttd 6639 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))):𝑆⟶𝐾) |
23 | cpm2mf.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
24 | 23, 11 | cpm2mfval 20931 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
25 | 24 | feq1d 6267 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼:𝑆⟶𝐾 ↔ (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))):𝑆⟶𝐾)) |
26 | 22, 25 | mpbird 249 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆⟶𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ↦ cmpt 4954 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 ↦ cmpt2 6912 Fincfn 8228 0cc0 10259 ℕ0cn0 11625 Basecbs 16229 Ringcrg 18908 Poly1cpl1 19914 coe1cco1 19915 Mat cmat 20587 ConstPolyMat ccpmat 20885 cPolyMatToMat ccpmat2mat 20887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-ot 4408 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-supp 7565 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fsupp 8551 df-sup 8623 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-fz 12627 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-sca 16328 df-vsca 16329 df-ip 16330 df-tset 16331 df-ple 16332 df-ds 16334 df-hom 16336 df-cco 16337 df-0g 16462 df-prds 16468 df-pws 16470 df-sra 19540 df-rgmod 19541 df-psr 19724 df-opsr 19728 df-psr1 19917 df-ply1 19919 df-coe1 19920 df-dsmm 20446 df-frlm 20461 df-mat 20588 df-cpmat 20888 df-cpmat2mat 20890 |
This theorem is referenced by: m2cpminv 20942 cpmadumatpolylem1 21063 cpmadumatpolylem2 21064 chcoeffeqlem 21067 cayhamlem4 21070 |
Copyright terms: Public domain | W3C validator |