Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpm2mf | Structured version Visualization version GIF version |
Description: The inverse matrix transformation is a function from the constant polynomial matrices to the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
cpm2mf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpm2mf.k | ⊢ 𝐾 = (Base‘𝐴) |
cpm2mf.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpm2mf.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
Ref | Expression |
---|---|
cpm2mf | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm2mf.i | . . 3 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
2 | cpm2mf.s | . . 3 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
3 | 1, 2 | cpm2mfval 21806 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
4 | cpm2mf.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
5 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | cpm2mf.k | . . 3 ⊢ 𝐾 = (Base‘𝐴) | |
7 | simpll 763 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑁 ∈ Fin) | |
8 | simplr 765 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑅 ∈ Ring) | |
9 | eqid 2738 | . . . . 5 ⊢ (𝑁 Mat (Poly1‘𝑅)) = (𝑁 Mat (Poly1‘𝑅)) | |
10 | eqid 2738 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
11 | eqid 2738 | . . . . 5 ⊢ (Base‘(𝑁 Mat (Poly1‘𝑅))) = (Base‘(𝑁 Mat (Poly1‘𝑅))) | |
12 | simp2 1135 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
13 | simp3 1136 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
14 | eqid 2738 | . . . . . . . 8 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
15 | 2, 14, 9, 11 | cpmatpmat 21767 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
16 | 15 | 3expa 1116 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
17 | 16 | 3ad2ant1 1131 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
18 | 9, 10, 11, 12, 13, 17 | matecld 21483 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑚𝑦) ∈ (Base‘(Poly1‘𝑅))) |
19 | 0nn0 12178 | . . . 4 ⊢ 0 ∈ ℕ0 | |
20 | eqid 2738 | . . . . 5 ⊢ (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑚𝑦)) | |
21 | 20, 10, 14, 5 | coe1fvalcl 21293 | . . . 4 ⊢ (((𝑥𝑚𝑦) ∈ (Base‘(Poly1‘𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅)) |
22 | 18, 19, 21 | sylancl 585 | . . 3 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅)) |
23 | 4, 5, 6, 7, 8, 22 | matbas2d 21480 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) ∈ 𝐾) |
24 | 3, 23 | fmpt3d 6972 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆⟶𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Fincfn 8691 0cc0 10802 ℕ0cn0 12163 Basecbs 16840 Ringcrg 19698 Poly1cpl1 21258 coe1cco1 21259 Mat cmat 21464 ConstPolyMat ccpmat 21760 cPolyMatToMat ccpmat2mat 21762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-psr 21022 df-opsr 21026 df-psr1 21261 df-ply1 21263 df-coe1 21264 df-mat 21465 df-cpmat 21763 df-cpmat2mat 21765 |
This theorem is referenced by: m2cpminv 21817 cpmadumatpolylem1 21938 cpmadumatpolylem2 21939 chcoeffeqlem 21942 cayhamlem4 21945 |
Copyright terms: Public domain | W3C validator |