MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpm2mf Structured version   Visualization version   GIF version

Theorem cpm2mf 22639
Description: The inverse matrix transformation is a function from the constant polynomial matrices to the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
cpm2mf.a 𝐴 = (𝑁 Mat 𝑅)
cpm2mf.k 𝐾 = (Base‘𝐴)
cpm2mf.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpm2mf.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
cpm2mf ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆𝐾)

Proof of Theorem cpm2mf
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpm2mf.i . . 3 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 cpm2mf.s . . 3 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mfval 22636 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
4 cpm2mf.a . . 3 𝐴 = (𝑁 Mat 𝑅)
5 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
6 cpm2mf.k . . 3 𝐾 = (Base‘𝐴)
7 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → 𝑁 ∈ Fin)
8 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → 𝑅 ∈ Ring)
9 eqid 2729 . . . . 5 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
10 eqid 2729 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
11 eqid 2729 . . . . 5 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
12 simp2 1137 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
13 simp3 1138 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
14 eqid 2729 . . . . . . . 8 (Poly1𝑅) = (Poly1𝑅)
152, 14, 9, 11cpmatpmat 22597 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
16153expa 1118 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
17163ad2ant1 1133 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
189, 10, 11, 12, 13, 17matecld 22313 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑚𝑦) ∈ (Base‘(Poly1𝑅)))
19 0nn0 12457 . . . 4 0 ∈ ℕ0
20 eqid 2729 . . . . 5 (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑚𝑦))
2120, 10, 14, 5coe1fvalcl 22097 . . . 4 (((𝑥𝑚𝑦) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅))
2218, 19, 21sylancl 586 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅))
234, 5, 6, 7, 8, 22matbas2d 22310 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) ∈ 𝐾)
243, 23fmpt3d 7088 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  0cc0 11068  0cn0 12442  Basecbs 17179  Ringcrg 20142  Poly1cpl1 22061  coe1cco1 22062   Mat cmat 22294   ConstPolyMat ccpmat 22590   cPolyMatToMat ccpmat2mat 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-psr 21818  df-opsr 21822  df-psr1 22064  df-ply1 22066  df-coe1 22067  df-mat 22295  df-cpmat 22593  df-cpmat2mat 22595
This theorem is referenced by:  m2cpminv  22647  cpmadumatpolylem1  22768  cpmadumatpolylem2  22769  chcoeffeqlem  22772  cayhamlem4  22775
  Copyright terms: Public domain W3C validator