MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpm2mf Structured version   Visualization version   GIF version

Theorem cpm2mf 22646
Description: The inverse matrix transformation is a function from the constant polynomial matrices to the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
cpm2mf.a 𝐴 = (𝑁 Mat 𝑅)
cpm2mf.k 𝐾 = (Base‘𝐴)
cpm2mf.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpm2mf.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
cpm2mf ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆𝐾)

Proof of Theorem cpm2mf
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpm2mf.i . . 3 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 cpm2mf.s . . 3 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mfval 22643 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
4 cpm2mf.a . . 3 𝐴 = (𝑁 Mat 𝑅)
5 eqid 2730 . . 3 (Base‘𝑅) = (Base‘𝑅)
6 cpm2mf.k . . 3 𝐾 = (Base‘𝐴)
7 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → 𝑁 ∈ Fin)
8 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → 𝑅 ∈ Ring)
9 eqid 2730 . . . . 5 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
10 eqid 2730 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
11 eqid 2730 . . . . 5 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
12 simp2 1137 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
13 simp3 1138 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
14 eqid 2730 . . . . . . . 8 (Poly1𝑅) = (Poly1𝑅)
152, 14, 9, 11cpmatpmat 22604 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
16153expa 1118 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
17163ad2ant1 1133 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
189, 10, 11, 12, 13, 17matecld 22320 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑚𝑦) ∈ (Base‘(Poly1𝑅)))
19 0nn0 12464 . . . 4 0 ∈ ℕ0
20 eqid 2730 . . . . 5 (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑚𝑦))
2120, 10, 14, 5coe1fvalcl 22104 . . . 4 (((𝑥𝑚𝑦) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅))
2218, 19, 21sylancl 586 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅))
234, 5, 6, 7, 8, 22matbas2d 22317 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) ∈ 𝐾)
243, 23fmpt3d 7091 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  Fincfn 8921  0cc0 11075  0cn0 12449  Basecbs 17186  Ringcrg 20149  Poly1cpl1 22068  coe1cco1 22069   Mat cmat 22301   ConstPolyMat ccpmat 22597   cPolyMatToMat ccpmat2mat 22599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-pws 17419  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-psr 21825  df-opsr 21829  df-psr1 22071  df-ply1 22073  df-coe1 22074  df-mat 22302  df-cpmat 22600  df-cpmat2mat 22602
This theorem is referenced by:  m2cpminv  22654  cpmadumatpolylem1  22775  cpmadumatpolylem2  22776  chcoeffeqlem  22779  cayhamlem4  22782
  Copyright terms: Public domain W3C validator