MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpm2mf Structured version   Visualization version   GIF version

Theorem cpm2mf 21603
Description: The inverse matrix transformation is a function from the constant polynomial matrices to the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
cpm2mf.a 𝐴 = (𝑁 Mat 𝑅)
cpm2mf.k 𝐾 = (Base‘𝐴)
cpm2mf.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpm2mf.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
cpm2mf ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆𝐾)

Proof of Theorem cpm2mf
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpm2mf.i . . 3 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 cpm2mf.s . . 3 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mfval 21600 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
4 cpm2mf.a . . 3 𝐴 = (𝑁 Mat 𝑅)
5 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
6 cpm2mf.k . . 3 𝐾 = (Base‘𝐴)
7 simpll 767 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → 𝑁 ∈ Fin)
8 simplr 769 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → 𝑅 ∈ Ring)
9 eqid 2736 . . . . 5 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
10 eqid 2736 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
11 eqid 2736 . . . . 5 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
12 simp2 1139 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
13 simp3 1140 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
14 eqid 2736 . . . . . . . 8 (Poly1𝑅) = (Poly1𝑅)
152, 14, 9, 11cpmatpmat 21561 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
16153expa 1120 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
17163ad2ant1 1135 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
189, 10, 11, 12, 13, 17matecld 21277 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑚𝑦) ∈ (Base‘(Poly1𝑅)))
19 0nn0 12070 . . . 4 0 ∈ ℕ0
20 eqid 2736 . . . . 5 (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑚𝑦))
2120, 10, 14, 5coe1fvalcl 21087 . . . 4 (((𝑥𝑚𝑦) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅))
2218, 19, 21sylancl 589 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) ∧ 𝑥𝑁𝑦𝑁) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅))
234, 5, 6, 7, 8, 22matbas2d 21274 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) ∈ 𝐾)
243, 23fmpt3d 6911 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wf 6354  cfv 6358  (class class class)co 7191  cmpo 7193  Fincfn 8604  0cc0 10694  0cn0 12055  Basecbs 16666  Ringcrg 19516  Poly1cpl1 21052  coe1cco1 21053   Mat cmat 21258   ConstPolyMat ccpmat 21554   cPolyMatToMat ccpmat2mat 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-hom 16773  df-cco 16774  df-0g 16900  df-prds 16906  df-pws 16908  df-sra 20163  df-rgmod 20164  df-dsmm 20648  df-frlm 20663  df-psr 20822  df-opsr 20826  df-psr1 21055  df-ply1 21057  df-coe1 21058  df-mat 21259  df-cpmat 21557  df-cpmat2mat 21559
This theorem is referenced by:  m2cpminv  21611  cpmadumatpolylem1  21732  cpmadumatpolylem2  21733  chcoeffeqlem  21736  cayhamlem4  21739
  Copyright terms: Public domain W3C validator