![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpm2mf | Structured version Visualization version GIF version |
Description: The inverse matrix transformation is a function from the constant polynomial matrices to the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
cpm2mf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpm2mf.k | ⊢ 𝐾 = (Base‘𝐴) |
cpm2mf.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpm2mf.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
Ref | Expression |
---|---|
cpm2mf | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm2mf.i | . . 3 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
2 | cpm2mf.s | . . 3 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
3 | 1, 2 | cpm2mfval 22664 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
4 | cpm2mf.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
5 | eqid 2728 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | cpm2mf.k | . . 3 ⊢ 𝐾 = (Base‘𝐴) | |
7 | simpll 766 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑁 ∈ Fin) | |
8 | simplr 768 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑅 ∈ Ring) | |
9 | eqid 2728 | . . . . 5 ⊢ (𝑁 Mat (Poly1‘𝑅)) = (𝑁 Mat (Poly1‘𝑅)) | |
10 | eqid 2728 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
11 | eqid 2728 | . . . . 5 ⊢ (Base‘(𝑁 Mat (Poly1‘𝑅))) = (Base‘(𝑁 Mat (Poly1‘𝑅))) | |
12 | simp2 1135 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
13 | simp3 1136 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
14 | eqid 2728 | . . . . . . . 8 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
15 | 2, 14, 9, 11 | cpmatpmat 22625 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
16 | 15 | 3expa 1116 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
17 | 16 | 3ad2ant1 1131 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
18 | 9, 10, 11, 12, 13, 17 | matecld 22341 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑚𝑦) ∈ (Base‘(Poly1‘𝑅))) |
19 | 0nn0 12518 | . . . 4 ⊢ 0 ∈ ℕ0 | |
20 | eqid 2728 | . . . . 5 ⊢ (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑚𝑦)) | |
21 | 20, 10, 14, 5 | coe1fvalcl 22131 | . . . 4 ⊢ (((𝑥𝑚𝑦) ∈ (Base‘(Poly1‘𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅)) |
22 | 18, 19, 21 | sylancl 585 | . . 3 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅)) |
23 | 4, 5, 6, 7, 8, 22 | matbas2d 22338 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) ∈ 𝐾) |
24 | 3, 23 | fmpt3d 7126 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆⟶𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 Fincfn 8964 0cc0 11139 ℕ0cn0 12503 Basecbs 17180 Ringcrg 20173 Poly1cpl1 22096 coe1cco1 22097 Mat cmat 22320 ConstPolyMat ccpmat 22618 cPolyMatToMat ccpmat2mat 22620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-sup 9466 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-hom 17257 df-cco 17258 df-0g 17423 df-prds 17429 df-pws 17431 df-sra 21058 df-rgmod 21059 df-dsmm 21666 df-frlm 21681 df-psr 21842 df-opsr 21846 df-psr1 22099 df-ply1 22101 df-coe1 22102 df-mat 22321 df-cpmat 22621 df-cpmat2mat 22623 |
This theorem is referenced by: m2cpminv 22675 cpmadumatpolylem1 22796 cpmadumatpolylem2 22797 chcoeffeqlem 22800 cayhamlem4 22803 |
Copyright terms: Public domain | W3C validator |