| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpm2mf | Structured version Visualization version GIF version | ||
| Description: The inverse matrix transformation is a function from the constant polynomial matrices to the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| cpm2mf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cpm2mf.k | ⊢ 𝐾 = (Base‘𝐴) |
| cpm2mf.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| cpm2mf.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
| Ref | Expression |
|---|---|
| cpm2mf | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpm2mf.i | . . 3 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
| 2 | cpm2mf.s | . . 3 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
| 3 | 1, 2 | cpm2mfval 22643 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
| 4 | cpm2mf.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 5 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | cpm2mf.k | . . 3 ⊢ 𝐾 = (Base‘𝐴) | |
| 7 | simpll 766 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑁 ∈ Fin) | |
| 8 | simplr 768 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑅 ∈ Ring) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (𝑁 Mat (Poly1‘𝑅)) = (𝑁 Mat (Poly1‘𝑅)) | |
| 10 | eqid 2730 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 11 | eqid 2730 | . . . . 5 ⊢ (Base‘(𝑁 Mat (Poly1‘𝑅))) = (Base‘(𝑁 Mat (Poly1‘𝑅))) | |
| 12 | simp2 1137 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
| 13 | simp3 1138 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
| 14 | eqid 2730 | . . . . . . . 8 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 15 | 2, 14, 9, 11 | cpmatpmat 22604 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
| 16 | 15 | 3expa 1118 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
| 17 | 16 | 3ad2ant1 1133 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1‘𝑅)))) |
| 18 | 9, 10, 11, 12, 13, 17 | matecld 22320 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑚𝑦) ∈ (Base‘(Poly1‘𝑅))) |
| 19 | 0nn0 12464 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 20 | eqid 2730 | . . . . 5 ⊢ (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑚𝑦)) | |
| 21 | 20, 10, 14, 5 | coe1fvalcl 22104 | . . . 4 ⊢ (((𝑥𝑚𝑦) ∈ (Base‘(Poly1‘𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅)) |
| 22 | 18, 19, 21 | sylancl 586 | . . 3 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥𝑚𝑦))‘0) ∈ (Base‘𝑅)) |
| 23 | 4, 5, 6, 7, 8, 22 | matbas2d 22317 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝑆) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) ∈ 𝐾) |
| 24 | 3, 23 | fmpt3d 7091 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 Fincfn 8921 0cc0 11075 ℕ0cn0 12449 Basecbs 17186 Ringcrg 20149 Poly1cpl1 22068 coe1cco1 22069 Mat cmat 22301 ConstPolyMat ccpmat 22597 cPolyMatToMat ccpmat2mat 22599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 df-psr 21825 df-opsr 21829 df-psr1 22071 df-ply1 22073 df-coe1 22074 df-mat 22302 df-cpmat 22600 df-cpmat2mat 22602 |
| This theorem is referenced by: m2cpminv 22654 cpmadumatpolylem1 22775 cpmadumatpolylem2 22776 chcoeffeqlem 22779 cayhamlem4 22782 |
| Copyright terms: Public domain | W3C validator |