MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid2 Structured version   Visualization version   GIF version

Theorem m2cpminvid2 20838
Description: The transformation applied to the inverse transformation of a constant polynomial matrix over the ring 𝑅 results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid2.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpminvid2.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
m2cpminvid2.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
m2cpminvid2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)

Proof of Theorem m2cpminvid2
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpminvid2.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 m2cpminvid2.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mval 20833 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
43fveq2d 6378 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))))
5 simp1 1166 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑁 ∈ Fin)
6 simp2 1167 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑅 ∈ Ring)
7 eqid 2764 . . . . 5 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
8 eqid 2764 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2764 . . . . 5 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
10 eqid 2764 . . . . . . 7 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
11 eqid 2764 . . . . . . 7 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
12 eqid 2764 . . . . . . 7 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
13 simp2 1167 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
14 simp3 1168 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
15 eqid 2764 . . . . . . . . 9 (Poly1𝑅) = (Poly1𝑅)
162, 15, 10, 12cpmatpmat 20793 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
17163ad2ant1 1163 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
1810, 11, 12, 13, 14, 17matecld 20507 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)))
19 0nn0 11554 . . . . . 6 0 ∈ ℕ0
20 eqid 2764 . . . . . . 7 (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑥𝑀𝑦))
2120, 11, 15, 8coe1fvalcl 19854 . . . . . 6 (((𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
2218, 19, 21sylancl 580 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
237, 8, 9, 5, 6, 22matbas2d 20504 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(𝑁 Mat 𝑅)))
24 m2cpminvid2.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
25 eqid 2764 . . . . 5 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
2624, 7, 9, 15, 25mat2pmatval 20807 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))))
275, 6, 23, 26syl3anc 1490 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))))
28 eqidd 2765 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
29 oveq12 6850 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗))
3029fveq2d 6378 . . . . . . . 8 ((𝑥 = 𝑖𝑦 = 𝑗) → (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑖𝑀𝑗)))
3130fveq1d 6376 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑖𝑀𝑗))‘0))
3231adantl 473 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑖𝑀𝑗))‘0))
33 simp2 1167 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
34 simp3 1168 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
35 fvexd 6389 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ V)
3628, 32, 33, 34, 35ovmpt2d 6985 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗) = ((coe1‘(𝑖𝑀𝑗))‘0))
3736fveq2d 6378 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))
3837mpt2eq3dva 6916 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
3927, 38eqtrd 2798 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
402, 15m2cpminvid2lem 20837 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
41 simpl2 1244 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑅 ∈ Ring)
42 simprl 787 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
43 simprr 789 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
4416adantr 472 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
4510, 11, 12, 42, 43, 44matecld 20507 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)))
4645, 19, 21sylancl 580 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
4715, 25, 8, 11ply1sclcl 19928 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)))
4841, 46, 47syl2anc 579 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)))
49 eqid 2764 . . . . . . . . 9 (coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0))) = (coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
5015, 11, 49, 20ply1coe1eq 19940 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)) ∧ (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅))) → (∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
5150bicomd 214 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)) ∧ (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅))) → (((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
5241, 48, 45, 51syl3anc 1490 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
5340, 52mpbird 248 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦))
5453ralrimivva 3117 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑥𝑁𝑦𝑁 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦))
55 eqidd 2765 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
56 oveq12 6850 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦))
5756fveq2d 6378 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑥𝑀𝑦)))
5857fveq1d 6376 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → ((coe1‘(𝑖𝑀𝑗))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
5958fveq2d 6378 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
6059adantl 473 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
61 simplr 785 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → 𝑥𝑁)
62 simpr 477 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → 𝑦𝑁)
63 fvexd 6389 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
6455, 60, 61, 62, 63ovmpt2d 6985 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
6564eqeq1d 2766 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
6665anasss 458 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
67662ralbidva 3134 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ∀𝑥𝑁𝑦𝑁 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
6854, 67mpbird 248 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦))
69 fvexd 6389 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (Poly1𝑅) ∈ V)
7063ad2ant1 1163 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
71163ad2ant1 1163 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
7210, 11, 12, 33, 34, 71matecld 20507 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Poly1𝑅)))
73 eqid 2764 . . . . . . . 8 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
7473, 11, 15, 8coe1fvalcl 19854 . . . . . . 7 (((𝑖𝑀𝑗) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅))
7572, 19, 74sylancl 580 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅))
7615, 25, 8, 11ply1sclcl 19928 . . . . . 6 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) ∈ (Base‘(Poly1𝑅)))
7770, 75, 76syl2anc 579 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) ∈ (Base‘(Poly1𝑅)))
7810, 11, 12, 5, 69, 77matbas2d 20504 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
7910, 12eqmat 20505 . . . 4 (((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) ∈ (Base‘(𝑁 Mat (Poly1𝑅))) ∧ 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅)))) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦)))
8078, 16, 79syl2anc 579 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦)))
8168, 80mpbird 248 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀)
824, 39, 813eqtrd 2802 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3054  Vcvv 3349  cfv 6067  (class class class)co 6841  cmpt2 6843  Fincfn 8159  0cc0 10188  0cn0 11537  Basecbs 16131  Ringcrg 18813  algSccascl 19584  Poly1cpl1 19819  coe1cco1 19820   Mat cmat 20488   ConstPolyMat ccpmat 20786   matToPolyMat cmat2pmat 20787   cPolyMatToMat ccpmat2mat 20788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-inf2 8752  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-ot 4342  df-uni 4594  df-int 4633  df-iun 4677  df-iin 4678  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-se 5236  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-isom 6076  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-of 7094  df-ofr 7095  df-om 7263  df-1st 7365  df-2nd 7366  df-supp 7497  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-2o 7764  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-ixp 8113  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-fsupp 8482  df-sup 8554  df-oi 8621  df-card 9015  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-8 11340  df-9 11341  df-n0 11538  df-z 11624  df-dec 11740  df-uz 11886  df-fz 12533  df-fzo 12673  df-seq 13008  df-hash 13321  df-struct 16133  df-ndx 16134  df-slot 16135  df-base 16137  df-sets 16138  df-ress 16139  df-plusg 16228  df-mulr 16229  df-sca 16231  df-vsca 16232  df-ip 16233  df-tset 16234  df-ple 16235  df-ds 16237  df-hom 16239  df-cco 16240  df-0g 16369  df-gsum 16370  df-prds 16375  df-pws 16377  df-mre 16513  df-mrc 16514  df-acs 16516  df-mgm 17509  df-sgrp 17551  df-mnd 17562  df-mhm 17602  df-submnd 17603  df-grp 17693  df-minusg 17694  df-sbg 17695  df-mulg 17809  df-subg 17856  df-ghm 17923  df-cntz 18014  df-cmn 18460  df-abl 18461  df-mgp 18756  df-ur 18768  df-srg 18772  df-ring 18815  df-subrg 19046  df-lmod 19133  df-lss 19201  df-sra 19445  df-rgmod 19446  df-ascl 19587  df-psr 19629  df-mvr 19630  df-mpl 19631  df-opsr 19633  df-psr1 19822  df-vr1 19823  df-ply1 19824  df-coe1 19825  df-dsmm 20351  df-frlm 20366  df-mat 20489  df-cpmat 20789  df-mat2pmat 20790  df-cpmat2mat 20791
This theorem is referenced by:  m2cpmfo  20839  m2cpminv  20843  cpmadumatpoly  20966  cayhamlem4  20971
  Copyright terms: Public domain W3C validator