MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid2 Structured version   Visualization version   GIF version

Theorem m2cpminvid2 22777
Description: The transformation applied to the inverse transformation of a constant polynomial matrix over the ring 𝑅 results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid2.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpminvid2.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
m2cpminvid2.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
m2cpminvid2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)

Proof of Theorem m2cpminvid2
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpminvid2.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 m2cpminvid2.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mval 22772 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
43fveq2d 6911 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))))
5 simp1 1135 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑁 ∈ Fin)
6 simp2 1136 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑅 ∈ Ring)
7 eqid 2735 . . . . 5 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
8 eqid 2735 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2735 . . . . 5 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
10 eqid 2735 . . . . . . 7 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
11 eqid 2735 . . . . . . 7 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
12 eqid 2735 . . . . . . 7 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
13 simp2 1136 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
14 simp3 1137 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
15 eqid 2735 . . . . . . . . 9 (Poly1𝑅) = (Poly1𝑅)
162, 15, 10, 12cpmatpmat 22732 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
17163ad2ant1 1132 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
1810, 11, 12, 13, 14, 17matecld 22448 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)))
19 0nn0 12539 . . . . . 6 0 ∈ ℕ0
20 eqid 2735 . . . . . . 7 (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑥𝑀𝑦))
2120, 11, 15, 8coe1fvalcl 22230 . . . . . 6 (((𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
2218, 19, 21sylancl 586 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
237, 8, 9, 5, 6, 22matbas2d 22445 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(𝑁 Mat 𝑅)))
24 m2cpminvid2.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
25 eqid 2735 . . . . 5 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
2624, 7, 9, 15, 25mat2pmatval 22746 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))))
275, 6, 23, 26syl3anc 1370 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))))
28 eqidd 2736 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
29 oveq12 7440 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗))
3029fveq2d 6911 . . . . . . . 8 ((𝑥 = 𝑖𝑦 = 𝑗) → (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑖𝑀𝑗)))
3130fveq1d 6909 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑖𝑀𝑗))‘0))
3231adantl 481 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑖𝑀𝑗))‘0))
33 simp2 1136 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
34 simp3 1137 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
35 fvexd 6922 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ V)
3628, 32, 33, 34, 35ovmpod 7585 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗) = ((coe1‘(𝑖𝑀𝑗))‘0))
3736fveq2d 6911 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))
3837mpoeq3dva 7510 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
3927, 38eqtrd 2775 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
402, 15m2cpminvid2lem 22776 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
41 simpl2 1191 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑅 ∈ Ring)
42 simprl 771 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
43 simprr 773 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
4416adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
4510, 11, 12, 42, 43, 44matecld 22448 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)))
4645, 19, 21sylancl 586 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
4715, 25, 8, 11ply1sclcl 22305 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)))
4841, 46, 47syl2anc 584 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)))
49 eqid 2735 . . . . . . . . 9 (coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0))) = (coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
5015, 11, 49, 20ply1coe1eq 22320 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)) ∧ (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅))) → (∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
5150bicomd 223 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)) ∧ (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅))) → (((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
5241, 48, 45, 51syl3anc 1370 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
5340, 52mpbird 257 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦))
5453ralrimivva 3200 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑥𝑁𝑦𝑁 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦))
55 eqidd 2736 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
56 oveq12 7440 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦))
5756fveq2d 6911 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑥𝑀𝑦)))
5857fveq1d 6909 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → ((coe1‘(𝑖𝑀𝑗))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
5958fveq2d 6911 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
6059adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
61 simplr 769 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → 𝑥𝑁)
62 simpr 484 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → 𝑦𝑁)
63 fvexd 6922 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
6455, 60, 61, 62, 63ovmpod 7585 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
6564eqeq1d 2737 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
6665anasss 466 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
67662ralbidva 3217 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ∀𝑥𝑁𝑦𝑁 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
6854, 67mpbird 257 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦))
69 fvexd 6922 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (Poly1𝑅) ∈ V)
7063ad2ant1 1132 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
71163ad2ant1 1132 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
7210, 11, 12, 33, 34, 71matecld 22448 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Poly1𝑅)))
73 eqid 2735 . . . . . . . 8 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
7473, 11, 15, 8coe1fvalcl 22230 . . . . . . 7 (((𝑖𝑀𝑗) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅))
7572, 19, 74sylancl 586 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅))
7615, 25, 8, 11ply1sclcl 22305 . . . . . 6 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) ∈ (Base‘(Poly1𝑅)))
7770, 75, 76syl2anc 584 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) ∈ (Base‘(Poly1𝑅)))
7810, 11, 12, 5, 69, 77matbas2d 22445 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
7910, 12eqmat 22446 . . . 4 (((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) ∈ (Base‘(𝑁 Mat (Poly1𝑅))) ∧ 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅)))) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦)))
8078, 16, 79syl2anc 584 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦)))
8168, 80mpbird 257 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀)
824, 39, 813eqtrd 2779 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cfv 6563  (class class class)co 7431  cmpo 7433  Fincfn 8984  0cc0 11153  0cn0 12524  Basecbs 17245  Ringcrg 20251  algSccascl 21890  Poly1cpl1 22194  coe1cco1 22195   Mat cmat 22427   ConstPolyMat ccpmat 22725   matToPolyMat cmat2pmat 22726   cPolyMatToMat ccpmat2mat 22727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-mat 22428  df-cpmat 22728  df-mat2pmat 22729  df-cpmat2mat 22730
This theorem is referenced by:  m2cpmfo  22778  m2cpminv  22782  cpmadumatpoly  22905  cayhamlem4  22910
  Copyright terms: Public domain W3C validator