Step | Hyp | Ref
| Expression |
1 | | m2cpminvid2.i |
. . . 4
β’ πΌ = (π cPolyMatToMat π
) |
2 | | m2cpminvid2.s |
. . . 4
β’ π = (π ConstPolyMat π
) |
3 | 1, 2 | cpm2mval 22252 |
. . 3
β’ ((π β Fin β§ π
β Ring β§ π β π) β (πΌβπ) = (π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0))) |
4 | 3 | fveq2d 6896 |
. 2
β’ ((π β Fin β§ π
β Ring β§ π β π) β (πβ(πΌβπ)) = (πβ(π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0)))) |
5 | | simp1 1137 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π) β π β Fin) |
6 | | simp2 1138 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π) β π
β Ring) |
7 | | eqid 2733 |
. . . . 5
β’ (π Mat π
) = (π Mat π
) |
8 | | eqid 2733 |
. . . . 5
β’
(Baseβπ
) =
(Baseβπ
) |
9 | | eqid 2733 |
. . . . 5
β’
(Baseβ(π Mat
π
)) = (Baseβ(π Mat π
)) |
10 | | eqid 2733 |
. . . . . . 7
β’ (π Mat
(Poly1βπ
))
= (π Mat
(Poly1βπ
)) |
11 | | eqid 2733 |
. . . . . . 7
β’
(Baseβ(Poly1βπ
)) =
(Baseβ(Poly1βπ
)) |
12 | | eqid 2733 |
. . . . . . 7
β’
(Baseβ(π Mat
(Poly1βπ
))) = (Baseβ(π Mat (Poly1βπ
))) |
13 | | simp2 1138 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π β§ π¦ β π) β π₯ β π) |
14 | | simp3 1139 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π β§ π¦ β π) β π¦ β π) |
15 | | eqid 2733 |
. . . . . . . . 9
β’
(Poly1βπ
) = (Poly1βπ
) |
16 | 2, 15, 10, 12 | cpmatpmat 22212 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring β§ π β π) β π β (Baseβ(π Mat (Poly1βπ
)))) |
17 | 16 | 3ad2ant1 1134 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π β§ π¦ β π) β π β (Baseβ(π Mat (Poly1βπ
)))) |
18 | 10, 11, 12, 13, 14, 17 | matecld 21928 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π β§ π¦ β π) β (π₯ππ¦) β
(Baseβ(Poly1βπ
))) |
19 | | 0nn0 12487 |
. . . . . 6
β’ 0 β
β0 |
20 | | eqid 2733 |
. . . . . . 7
β’
(coe1β(π₯ππ¦)) = (coe1β(π₯ππ¦)) |
21 | 20, 11, 15, 8 | coe1fvalcl 21736 |
. . . . . 6
β’ (((π₯ππ¦) β
(Baseβ(Poly1βπ
)) β§ 0 β β0)
β ((coe1β(π₯ππ¦))β0) β (Baseβπ
)) |
22 | 18, 19, 21 | sylancl 587 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π β§ π¦ β π) β ((coe1β(π₯ππ¦))β0) β (Baseβπ
)) |
23 | 7, 8, 9, 5, 6, 22 | matbas2d 21925 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π) β (π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0)) β (Baseβ(π Mat π
))) |
24 | | m2cpminvid2.t |
. . . . 5
β’ π = (π matToPolyMat π
) |
25 | | eqid 2733 |
. . . . 5
β’
(algScβ(Poly1βπ
)) =
(algScβ(Poly1βπ
)) |
26 | 24, 7, 9, 15, 25 | mat2pmatval 22226 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ (π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0)) β (Baseβ(π Mat π
))) β (πβ(π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0))) = (π β π, π β π β¦
((algScβ(Poly1βπ
))β(π(π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0))π)))) |
27 | 5, 6, 23, 26 | syl3anc 1372 |
. . 3
β’ ((π β Fin β§ π
β Ring β§ π β π) β (πβ(π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0))) = (π β π, π β π β¦
((algScβ(Poly1βπ
))β(π(π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0))π)))) |
28 | | eqidd 2734 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β (π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0)) = (π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0))) |
29 | | oveq12 7418 |
. . . . . . . . 9
β’ ((π₯ = π β§ π¦ = π) β (π₯ππ¦) = (πππ)) |
30 | 29 | fveq2d 6896 |
. . . . . . . 8
β’ ((π₯ = π β§ π¦ = π) β (coe1β(π₯ππ¦)) = (coe1β(πππ))) |
31 | 30 | fveq1d 6894 |
. . . . . . 7
β’ ((π₯ = π β§ π¦ = π) β ((coe1β(π₯ππ¦))β0) = ((coe1β(πππ))β0)) |
32 | 31 | adantl 483 |
. . . . . 6
β’ ((((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β§ (π₯ = π β§ π¦ = π)) β ((coe1β(π₯ππ¦))β0) = ((coe1β(πππ))β0)) |
33 | | simp2 1138 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β π β π) |
34 | | simp3 1139 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β π β π) |
35 | | fvexd 6907 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β ((coe1β(πππ))β0) β V) |
36 | 28, 32, 33, 34, 35 | ovmpod 7560 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β (π(π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0))π) = ((coe1β(πππ))β0)) |
37 | 36 | fveq2d 6896 |
. . . 4
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β
((algScβ(Poly1βπ
))β(π(π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0))π)) =
((algScβ(Poly1βπ
))β((coe1β(πππ))β0))) |
38 | 37 | mpoeq3dva 7486 |
. . 3
β’ ((π β Fin β§ π
β Ring β§ π β π) β (π β π, π β π β¦
((algScβ(Poly1βπ
))β(π(π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0))π))) = (π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)))) |
39 | 27, 38 | eqtrd 2773 |
. 2
β’ ((π β Fin β§ π
β Ring β§ π β π) β (πβ(π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0))) = (π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)))) |
40 | 2, 15 | m2cpminvid2lem 22256 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β βπ β β0
((coe1β((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)))βπ) = ((coe1β(π₯ππ¦))βπ)) |
41 | | simpl2 1193 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β π
β Ring) |
42 | | simprl 770 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β π₯ β π) |
43 | | simprr 772 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β π¦ β π) |
44 | 16 | adantr 482 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β π β (Baseβ(π Mat (Poly1βπ
)))) |
45 | 10, 11, 12, 42, 43, 44 | matecld 21928 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β (π₯ππ¦) β
(Baseβ(Poly1βπ
))) |
46 | 45, 19, 21 | sylancl 587 |
. . . . . . . 8
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β ((coe1β(π₯ππ¦))β0) β (Baseβπ
)) |
47 | 15, 25, 8, 11 | ply1sclcl 21808 |
. . . . . . . 8
β’ ((π
β Ring β§
((coe1β(π₯ππ¦))β0) β (Baseβπ
)) β
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) β
(Baseβ(Poly1βπ
))) |
48 | 41, 46, 47 | syl2anc 585 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) β
(Baseβ(Poly1βπ
))) |
49 | | eqid 2733 |
. . . . . . . . 9
β’
(coe1β((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0))) =
(coe1β((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0))) |
50 | 15, 11, 49, 20 | ply1coe1eq 21822 |
. . . . . . . 8
β’ ((π
β Ring β§
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) β
(Baseβ(Poly1βπ
)) β§ (π₯ππ¦) β
(Baseβ(Poly1βπ
))) β (βπ β β0
((coe1β((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)))βπ) = ((coe1β(π₯ππ¦))βπ) β
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) = (π₯ππ¦))) |
51 | 50 | bicomd 222 |
. . . . . . 7
β’ ((π
β Ring β§
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) β
(Baseβ(Poly1βπ
)) β§ (π₯ππ¦) β
(Baseβ(Poly1βπ
))) β
(((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) = (π₯ππ¦) β βπ β β0
((coe1β((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)))βπ) = ((coe1β(π₯ππ¦))βπ))) |
52 | 41, 48, 45, 51 | syl3anc 1372 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β
(((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) = (π₯ππ¦) β βπ β β0
((coe1β((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)))βπ) = ((coe1β(π₯ππ¦))βπ))) |
53 | 40, 52 | mpbird 257 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) = (π₯ππ¦)) |
54 | 53 | ralrimivva 3201 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π) β βπ₯ β π βπ¦ β π ((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) = (π₯ππ¦)) |
55 | | eqidd 2734 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π) β§ π¦ β π) β (π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0))) = (π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)))) |
56 | | oveq12 7418 |
. . . . . . . . . . . 12
β’ ((π = π₯ β§ π = π¦) β (πππ) = (π₯ππ¦)) |
57 | 56 | fveq2d 6896 |
. . . . . . . . . . 11
β’ ((π = π₯ β§ π = π¦) β (coe1β(πππ)) = (coe1β(π₯ππ¦))) |
58 | 57 | fveq1d 6894 |
. . . . . . . . . 10
β’ ((π = π₯ β§ π = π¦) β ((coe1β(πππ))β0) = ((coe1β(π₯ππ¦))β0)) |
59 | 58 | fveq2d 6896 |
. . . . . . . . 9
β’ ((π = π₯ β§ π = π¦) β
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)) =
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0))) |
60 | 59 | adantl 483 |
. . . . . . . 8
β’
(((((π β Fin
β§ π
β Ring β§
π β π) β§ π₯ β π) β§ π¦ β π) β§ (π = π₯ β§ π = π¦)) β
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)) =
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0))) |
61 | | simplr 768 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π) β§ π¦ β π) β π₯ β π) |
62 | | simpr 486 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π) β§ π¦ β π) β π¦ β π) |
63 | | fvexd 6907 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π) β§ π¦ β π) β
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) β V) |
64 | 55, 60, 61, 62, 63 | ovmpod 7560 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π) β§ π¦ β π) β (π₯(π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)))π¦) =
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0))) |
65 | 64 | eqeq1d 2735 |
. . . . . 6
β’ ((((π β Fin β§ π
β Ring β§ π β π) β§ π₯ β π) β§ π¦ β π) β ((π₯(π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)))π¦) = (π₯ππ¦) β
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) = (π₯ππ¦))) |
66 | 65 | anasss 468 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ (π₯ β π β§ π¦ β π)) β ((π₯(π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)))π¦) = (π₯ππ¦) β
((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) = (π₯ππ¦))) |
67 | 66 | 2ralbidva 3217 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π) β (βπ₯ β π βπ¦ β π (π₯(π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)))π¦) = (π₯ππ¦) β βπ₯ β π βπ¦ β π ((algScβ(Poly1βπ
))β((coe1β(π₯ππ¦))β0)) = (π₯ππ¦))) |
68 | 54, 67 | mpbird 257 |
. . 3
β’ ((π β Fin β§ π
β Ring β§ π β π) β βπ₯ β π βπ¦ β π (π₯(π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)))π¦) = (π₯ππ¦)) |
69 | | fvexd 6907 |
. . . . 5
β’ ((π β Fin β§ π
β Ring β§ π β π) β (Poly1βπ
) β V) |
70 | 6 | 3ad2ant1 1134 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β π
β Ring) |
71 | 16 | 3ad2ant1 1134 |
. . . . . . . 8
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β π β (Baseβ(π Mat (Poly1βπ
)))) |
72 | 10, 11, 12, 33, 34, 71 | matecld 21928 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β (πππ) β
(Baseβ(Poly1βπ
))) |
73 | | eqid 2733 |
. . . . . . . 8
β’
(coe1β(πππ)) = (coe1β(πππ)) |
74 | 73, 11, 15, 8 | coe1fvalcl 21736 |
. . . . . . 7
β’ (((πππ) β
(Baseβ(Poly1βπ
)) β§ 0 β β0)
β ((coe1β(πππ))β0) β (Baseβπ
)) |
75 | 72, 19, 74 | sylancl 587 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β ((coe1β(πππ))β0) β (Baseβπ
)) |
76 | 15, 25, 8, 11 | ply1sclcl 21808 |
. . . . . 6
β’ ((π
β Ring β§
((coe1β(πππ))β0) β (Baseβπ
)) β
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)) β
(Baseβ(Poly1βπ
))) |
77 | 70, 75, 76 | syl2anc 585 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β π) β§ π β π β§ π β π) β
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)) β
(Baseβ(Poly1βπ
))) |
78 | 10, 11, 12, 5, 69, 77 | matbas2d 21925 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π) β (π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0))) β (Baseβ(π Mat
(Poly1βπ
)))) |
79 | 10, 12 | eqmat 21926 |
. . . 4
β’ (((π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0))) β (Baseβ(π Mat
(Poly1βπ
))) β§ π β (Baseβ(π Mat (Poly1βπ
)))) β ((π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0))) = π β βπ₯ β π βπ¦ β π (π₯(π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)))π¦) = (π₯ππ¦))) |
80 | 78, 16, 79 | syl2anc 585 |
. . 3
β’ ((π β Fin β§ π
β Ring β§ π β π) β ((π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0))) = π β βπ₯ β π βπ¦ β π (π₯(π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0)))π¦) = (π₯ππ¦))) |
81 | 68, 80 | mpbird 257 |
. 2
β’ ((π β Fin β§ π
β Ring β§ π β π) β (π β π, π β π β¦
((algScβ(Poly1βπ
))β((coe1β(πππ))β0))) = π) |
82 | 4, 39, 81 | 3eqtrd 2777 |
1
β’ ((π β Fin β§ π
β Ring β§ π β π) β (πβ(πΌβπ)) = π) |