MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid2 Structured version   Visualization version   GIF version

Theorem m2cpminvid2 21652
Description: The transformation applied to the inverse transformation of a constant polynomial matrix over the ring 𝑅 results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid2.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpminvid2.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
m2cpminvid2.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
m2cpminvid2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)

Proof of Theorem m2cpminvid2
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpminvid2.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 m2cpminvid2.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mval 21647 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
43fveq2d 6721 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))))
5 simp1 1138 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑁 ∈ Fin)
6 simp2 1139 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑅 ∈ Ring)
7 eqid 2737 . . . . 5 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
8 eqid 2737 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2737 . . . . 5 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
10 eqid 2737 . . . . . . 7 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
11 eqid 2737 . . . . . . 7 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
12 eqid 2737 . . . . . . 7 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
13 simp2 1139 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
14 simp3 1140 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
15 eqid 2737 . . . . . . . . 9 (Poly1𝑅) = (Poly1𝑅)
162, 15, 10, 12cpmatpmat 21607 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
17163ad2ant1 1135 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
1810, 11, 12, 13, 14, 17matecld 21323 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)))
19 0nn0 12105 . . . . . 6 0 ∈ ℕ0
20 eqid 2737 . . . . . . 7 (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑥𝑀𝑦))
2120, 11, 15, 8coe1fvalcl 21133 . . . . . 6 (((𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
2218, 19, 21sylancl 589 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
237, 8, 9, 5, 6, 22matbas2d 21320 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(𝑁 Mat 𝑅)))
24 m2cpminvid2.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
25 eqid 2737 . . . . 5 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
2624, 7, 9, 15, 25mat2pmatval 21621 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))))
275, 6, 23, 26syl3anc 1373 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))))
28 eqidd 2738 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
29 oveq12 7222 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗))
3029fveq2d 6721 . . . . . . . 8 ((𝑥 = 𝑖𝑦 = 𝑗) → (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑖𝑀𝑗)))
3130fveq1d 6719 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑖𝑀𝑗))‘0))
3231adantl 485 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑖𝑀𝑗))‘0))
33 simp2 1139 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
34 simp3 1140 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
35 fvexd 6732 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ V)
3628, 32, 33, 34, 35ovmpod 7361 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗) = ((coe1‘(𝑖𝑀𝑗))‘0))
3736fveq2d 6721 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))
3837mpoeq3dva 7288 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
3927, 38eqtrd 2777 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
402, 15m2cpminvid2lem 21651 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
41 simpl2 1194 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑅 ∈ Ring)
42 simprl 771 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
43 simprr 773 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
4416adantr 484 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
4510, 11, 12, 42, 43, 44matecld 21323 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)))
4645, 19, 21sylancl 589 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
4715, 25, 8, 11ply1sclcl 21207 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)))
4841, 46, 47syl2anc 587 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)))
49 eqid 2737 . . . . . . . . 9 (coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0))) = (coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
5015, 11, 49, 20ply1coe1eq 21219 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)) ∧ (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅))) → (∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
5150bicomd 226 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)) ∧ (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅))) → (((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
5241, 48, 45, 51syl3anc 1373 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
5340, 52mpbird 260 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦))
5453ralrimivva 3112 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑥𝑁𝑦𝑁 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦))
55 eqidd 2738 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
56 oveq12 7222 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦))
5756fveq2d 6721 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑥𝑀𝑦)))
5857fveq1d 6719 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → ((coe1‘(𝑖𝑀𝑗))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
5958fveq2d 6721 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
6059adantl 485 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
61 simplr 769 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → 𝑥𝑁)
62 simpr 488 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → 𝑦𝑁)
63 fvexd 6732 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
6455, 60, 61, 62, 63ovmpod 7361 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
6564eqeq1d 2739 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
6665anasss 470 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
67662ralbidva 3119 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ∀𝑥𝑁𝑦𝑁 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
6854, 67mpbird 260 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦))
69 fvexd 6732 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (Poly1𝑅) ∈ V)
7063ad2ant1 1135 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
71163ad2ant1 1135 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
7210, 11, 12, 33, 34, 71matecld 21323 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Poly1𝑅)))
73 eqid 2737 . . . . . . . 8 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
7473, 11, 15, 8coe1fvalcl 21133 . . . . . . 7 (((𝑖𝑀𝑗) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅))
7572, 19, 74sylancl 589 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅))
7615, 25, 8, 11ply1sclcl 21207 . . . . . 6 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) ∈ (Base‘(Poly1𝑅)))
7770, 75, 76syl2anc 587 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) ∈ (Base‘(Poly1𝑅)))
7810, 11, 12, 5, 69, 77matbas2d 21320 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
7910, 12eqmat 21321 . . . 4 (((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) ∈ (Base‘(𝑁 Mat (Poly1𝑅))) ∧ 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅)))) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦)))
8078, 16, 79syl2anc 587 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦)))
8168, 80mpbird 260 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀)
824, 39, 813eqtrd 2781 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  cfv 6380  (class class class)co 7213  cmpo 7215  Fincfn 8626  0cc0 10729  0cn0 12090  Basecbs 16760  Ringcrg 19562  algSccascl 20814  Poly1cpl1 21098  coe1cco1 21099   Mat cmat 21304   ConstPolyMat ccpmat 21600   matToPolyMat cmat2pmat 21601   cPolyMatToMat ccpmat2mat 21602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-ot 4550  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-hom 16826  df-cco 16827  df-0g 16946  df-gsum 16947  df-prds 16952  df-pws 16954  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-srg 19521  df-ring 19564  df-subrg 19798  df-lmod 19901  df-lss 19969  df-sra 20209  df-rgmod 20210  df-dsmm 20694  df-frlm 20709  df-ascl 20817  df-psr 20868  df-mvr 20869  df-mpl 20870  df-opsr 20872  df-psr1 21101  df-vr1 21102  df-ply1 21103  df-coe1 21104  df-mat 21305  df-cpmat 21603  df-mat2pmat 21604  df-cpmat2mat 21605
This theorem is referenced by:  m2cpmfo  21653  m2cpminv  21657  cpmadumatpoly  21780  cayhamlem4  21785
  Copyright terms: Public domain W3C validator