MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid2 Structured version   Visualization version   GIF version

Theorem m2cpminvid2 22782
Description: The transformation applied to the inverse transformation of a constant polynomial matrix over the ring 𝑅 results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid2.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpminvid2.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
m2cpminvid2.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
m2cpminvid2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)

Proof of Theorem m2cpminvid2
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpminvid2.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 m2cpminvid2.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mval 22777 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
43fveq2d 6924 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))))
5 simp1 1136 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑁 ∈ Fin)
6 simp2 1137 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑅 ∈ Ring)
7 eqid 2740 . . . . 5 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
8 eqid 2740 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2740 . . . . 5 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
10 eqid 2740 . . . . . . 7 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
11 eqid 2740 . . . . . . 7 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
12 eqid 2740 . . . . . . 7 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
13 simp2 1137 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
14 simp3 1138 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
15 eqid 2740 . . . . . . . . 9 (Poly1𝑅) = (Poly1𝑅)
162, 15, 10, 12cpmatpmat 22737 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
17163ad2ant1 1133 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
1810, 11, 12, 13, 14, 17matecld 22453 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)))
19 0nn0 12568 . . . . . 6 0 ∈ ℕ0
20 eqid 2740 . . . . . . 7 (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑥𝑀𝑦))
2120, 11, 15, 8coe1fvalcl 22235 . . . . . 6 (((𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
2218, 19, 21sylancl 585 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
237, 8, 9, 5, 6, 22matbas2d 22450 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(𝑁 Mat 𝑅)))
24 m2cpminvid2.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
25 eqid 2740 . . . . 5 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
2624, 7, 9, 15, 25mat2pmatval 22751 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))))
275, 6, 23, 26syl3anc 1371 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))))
28 eqidd 2741 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
29 oveq12 7457 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗))
3029fveq2d 6924 . . . . . . . 8 ((𝑥 = 𝑖𝑦 = 𝑗) → (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑖𝑀𝑗)))
3130fveq1d 6922 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑖𝑀𝑗))‘0))
3231adantl 481 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑖𝑀𝑗))‘0))
33 simp2 1137 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
34 simp3 1138 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
35 fvexd 6935 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ V)
3628, 32, 33, 34, 35ovmpod 7602 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗) = ((coe1‘(𝑖𝑀𝑗))‘0))
3736fveq2d 6924 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))
3837mpoeq3dva 7527 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
3927, 38eqtrd 2780 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
402, 15m2cpminvid2lem 22781 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
41 simpl2 1192 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑅 ∈ Ring)
42 simprl 770 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
43 simprr 772 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
4416adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
4510, 11, 12, 42, 43, 44matecld 22453 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)))
4645, 19, 21sylancl 585 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
4715, 25, 8, 11ply1sclcl 22310 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)))
4841, 46, 47syl2anc 583 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)))
49 eqid 2740 . . . . . . . . 9 (coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0))) = (coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
5015, 11, 49, 20ply1coe1eq 22325 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)) ∧ (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅))) → (∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
5150bicomd 223 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)) ∧ (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅))) → (((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
5241, 48, 45, 51syl3anc 1371 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
5340, 52mpbird 257 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦))
5453ralrimivva 3208 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑥𝑁𝑦𝑁 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦))
55 eqidd 2741 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
56 oveq12 7457 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦))
5756fveq2d 6924 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑥𝑀𝑦)))
5857fveq1d 6922 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → ((coe1‘(𝑖𝑀𝑗))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
5958fveq2d 6924 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
6059adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
61 simplr 768 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → 𝑥𝑁)
62 simpr 484 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → 𝑦𝑁)
63 fvexd 6935 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
6455, 60, 61, 62, 63ovmpod 7602 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
6564eqeq1d 2742 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
6665anasss 466 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
67662ralbidva 3225 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ∀𝑥𝑁𝑦𝑁 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
6854, 67mpbird 257 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦))
69 fvexd 6935 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (Poly1𝑅) ∈ V)
7063ad2ant1 1133 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
71163ad2ant1 1133 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
7210, 11, 12, 33, 34, 71matecld 22453 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Poly1𝑅)))
73 eqid 2740 . . . . . . . 8 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
7473, 11, 15, 8coe1fvalcl 22235 . . . . . . 7 (((𝑖𝑀𝑗) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅))
7572, 19, 74sylancl 585 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅))
7615, 25, 8, 11ply1sclcl 22310 . . . . . 6 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) ∈ (Base‘(Poly1𝑅)))
7770, 75, 76syl2anc 583 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) ∈ (Base‘(Poly1𝑅)))
7810, 11, 12, 5, 69, 77matbas2d 22450 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
7910, 12eqmat 22451 . . . 4 (((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) ∈ (Base‘(𝑁 Mat (Poly1𝑅))) ∧ 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅)))) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦)))
8078, 16, 79syl2anc 583 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦)))
8168, 80mpbird 257 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀)
824, 39, 813eqtrd 2784 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  0cc0 11184  0cn0 12553  Basecbs 17258  Ringcrg 20260  algSccascl 21895  Poly1cpl1 22199  coe1cco1 22200   Mat cmat 22432   ConstPolyMat ccpmat 22730   matToPolyMat cmat2pmat 22731   cPolyMatToMat ccpmat2mat 22732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mat 22433  df-cpmat 22733  df-mat2pmat 22734  df-cpmat2mat 22735
This theorem is referenced by:  m2cpmfo  22783  m2cpminv  22787  cpmadumatpoly  22910  cayhamlem4  22915
  Copyright terms: Public domain W3C validator