| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2cpmrngiso | Structured version Visualization version GIF version | ||
| Description: The transformation of matrices into constant polynomial matrices is a ring isomorphism. (Contributed by AV, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| m2cpmfo.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| m2cpmfo.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| m2cpmfo.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| m2cpmfo.k | ⊢ 𝐾 = (Base‘𝐴) |
| m2cpmrngiso.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| m2cpmrngiso.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| m2cpmrngiso.u | ⊢ 𝑈 = (𝐶 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| m2cpmrngiso | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingIso 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m2cpmfo.s | . . 3 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
| 2 | m2cpmfo.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 3 | m2cpmfo.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 4 | m2cpmfo.k | . . 3 ⊢ 𝐾 = (Base‘𝐴) | |
| 5 | m2cpmrngiso.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 6 | m2cpmrngiso.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 7 | m2cpmrngiso.u | . . 3 ⊢ 𝑈 = (𝐶 ↾s 𝑆) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | m2cpmrhm 22671 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑈)) |
| 9 | crngring 20173 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 10 | 1, 2, 3, 4 | m2cpmf1o 22682 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾–1-1-onto→𝑆) |
| 11 | eqid 2733 | . . . . . . . . . 10 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 12 | 1, 5, 6, 11 | cpmatpmat 22635 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚 ∈ 𝑆) → 𝑚 ∈ (Base‘𝐶)) |
| 13 | 12 | 3expia 1121 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑚 ∈ 𝑆 → 𝑚 ∈ (Base‘𝐶))) |
| 14 | 13 | ssrdv 3937 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐶)) |
| 15 | 7, 11 | ressbas2 17159 | . . . . . . 7 ⊢ (𝑆 ⊆ (Base‘𝐶) → 𝑆 = (Base‘𝑈)) |
| 16 | 14, 15 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = (Base‘𝑈)) |
| 17 | 16 | eqcomd 2739 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑈) = 𝑆) |
| 18 | 17 | f1oeq3d 6768 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇:𝐾–1-1-onto→(Base‘𝑈) ↔ 𝑇:𝐾–1-1-onto→𝑆)) |
| 19 | 10, 18 | mpbird 257 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾–1-1-onto→(Base‘𝑈)) |
| 20 | 9, 19 | sylan2 593 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇:𝐾–1-1-onto→(Base‘𝑈)) |
| 21 | eqid 2733 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 22 | 4, 21 | isrim 20419 | . 2 ⊢ (𝑇 ∈ (𝐴 RingIso 𝑈) ↔ (𝑇 ∈ (𝐴 RingHom 𝑈) ∧ 𝑇:𝐾–1-1-onto→(Base‘𝑈))) |
| 23 | 8, 20, 22 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingIso 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 Fincfn 8878 Basecbs 17130 ↾s cress 17151 Ringcrg 20161 CRingccrg 20162 RingHom crh 20397 RingIso crs 20398 Poly1cpl1 22099 Mat cmat 22332 ConstPolyMat ccpmat 22628 matToPolyMat cmat2pmat 22629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-sup 9336 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-fzo 13565 df-seq 13919 df-hash 14248 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-hom 17195 df-cco 17196 df-0g 17355 df-gsum 17356 df-prds 17361 df-pws 17363 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-ghm 19135 df-cntz 19239 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-srg 20115 df-ring 20163 df-cring 20164 df-rhm 20400 df-rim 20401 df-subrng 20471 df-subrg 20495 df-lmod 20805 df-lss 20875 df-sra 21117 df-rgmod 21118 df-dsmm 21679 df-frlm 21694 df-assa 21800 df-ascl 21802 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-psr1 22102 df-vr1 22103 df-ply1 22104 df-coe1 22105 df-mamu 22316 df-mat 22333 df-cpmat 22631 df-mat2pmat 22632 df-cpmat2mat 22633 |
| This theorem is referenced by: matcpmric 22684 |
| Copyright terms: Public domain | W3C validator |