![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curry1f | Structured version Visualization version GIF version |
Description: Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008.) |
Ref | Expression |
---|---|
curry1.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) |
Ref | Expression |
---|---|
curry1f | ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴) → 𝐺:𝐵⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6374 | . . 3 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐷 → 𝐹 Fn (𝐴 × 𝐵)) | |
2 | curry1.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) | |
3 | 2 | curry1 7646 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))) |
4 | 1, 3 | sylan 580 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))) |
5 | fovrn 7165 | . . 3 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝐶𝐹𝑥) ∈ 𝐷) | |
6 | 5 | 3expa 1109 | . 2 ⊢ (((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐶𝐹𝑥) ∈ 𝐷) |
7 | 4, 6 | fmpt3d 6734 | 1 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴) → 𝐺:𝐵⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 Vcvv 3432 {csn 4466 ↦ cmpt 5035 × cxp 5433 ◡ccnv 5434 ↾ cres 5437 ∘ ccom 5439 Fn wfn 6212 ⟶wf 6213 (class class class)co 7007 2nd c2nd 7535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-ov 7010 df-1st 7536 df-2nd 7537 |
This theorem is referenced by: nvinvfval 28096 |
Copyright terms: Public domain | W3C validator |