MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry1f Structured version   Visualization version   GIF version

Theorem curry1f 8046
Description: Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008.)
Hypothesis
Ref Expression
curry1.1 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
Assertion
Ref Expression
curry1f ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) → 𝐺:𝐵𝐷)

Proof of Theorem curry1f
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6656 . . 3 (𝐹:(𝐴 × 𝐵)⟶𝐷𝐹 Fn (𝐴 × 𝐵))
2 curry1.1 . . . 4 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
32curry1 8044 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
41, 3sylan 580 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
5 fovcdm 7523 . . 3 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴𝑥𝐵) → (𝐶𝐹𝑥) ∈ 𝐷)
653expa 1118 . 2 (((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) ∧ 𝑥𝐵) → (𝐶𝐹𝑥) ∈ 𝐷)
74, 6fmpt3d 7054 1 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) → 𝐺:𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cmpt 5176   × cxp 5621  ccnv 5622  cres 5625  ccom 5627   Fn wfn 6481  wf 6482  (class class class)co 7353  2nd c2nd 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-1st 7931  df-2nd 7932
This theorem is referenced by:  nvinvfval  30602
  Copyright terms: Public domain W3C validator