MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry1f Structured version   Visualization version   GIF version

Theorem curry1f 8094
Description: Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008.)
Hypothesis
Ref Expression
curry1.1 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
Assertion
Ref Expression
curry1f ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) → 𝐺:𝐵𝐷)

Proof of Theorem curry1f
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6717 . . 3 (𝐹:(𝐴 × 𝐵)⟶𝐷𝐹 Fn (𝐴 × 𝐵))
2 curry1.1 . . . 4 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
32curry1 8092 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
41, 3sylan 580 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
5 fovcdm 7579 . . 3 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴𝑥𝐵) → (𝐶𝐹𝑥) ∈ 𝐷)
653expa 1118 . 2 (((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) ∧ 𝑥𝐵) → (𝐶𝐹𝑥) ∈ 𝐷)
74, 6fmpt3d 7117 1 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) → 𝐺:𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4628  cmpt 5231   × cxp 5674  ccnv 5675  cres 5678  ccom 5680   Fn wfn 6538  wf 6539  (class class class)co 7411  2nd c2nd 7976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-1st 7977  df-2nd 7978
This theorem is referenced by:  nvinvfval  30148
  Copyright terms: Public domain W3C validator