|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > curry1f | Structured version Visualization version GIF version | ||
| Description: Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008.) | 
| Ref | Expression | 
|---|---|
| curry1.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) | 
| Ref | Expression | 
|---|---|
| curry1f | ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴) → 𝐺:𝐵⟶𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ffn 6736 | . . 3 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐷 → 𝐹 Fn (𝐴 × 𝐵)) | |
| 2 | curry1.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) | |
| 3 | 2 | curry1 8129 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))) | 
| 4 | 1, 3 | sylan 580 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))) | 
| 5 | fovcdm 7603 | . . 3 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝐶𝐹𝑥) ∈ 𝐷) | |
| 6 | 5 | 3expa 1119 | . 2 ⊢ (((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐶𝐹𝑥) ∈ 𝐷) | 
| 7 | 4, 6 | fmpt3d 7136 | 1 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐴) → 𝐺:𝐵⟶𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 {csn 4626 ↦ cmpt 5225 × cxp 5683 ◡ccnv 5684 ↾ cres 5687 ∘ ccom 5689 Fn wfn 6556 ⟶wf 6557 (class class class)co 7431 2nd c2nd 8013 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-1st 8014 df-2nd 8015 | 
| This theorem is referenced by: nvinvfval 30659 | 
| Copyright terms: Public domain | W3C validator |