MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry1f Structured version   Visualization version   GIF version

Theorem curry1f 8130
Description: Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008.)
Hypothesis
Ref Expression
curry1.1 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
Assertion
Ref Expression
curry1f ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) → 𝐺:𝐵𝐷)

Proof of Theorem curry1f
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6737 . . 3 (𝐹:(𝐴 × 𝐵)⟶𝐷𝐹 Fn (𝐴 × 𝐵))
2 curry1.1 . . . 4 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
32curry1 8128 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
41, 3sylan 580 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
5 fovcdm 7603 . . 3 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴𝑥𝐵) → (𝐶𝐹𝑥) ∈ 𝐷)
653expa 1117 . 2 (((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) ∧ 𝑥𝐵) → (𝐶𝐹𝑥) ∈ 𝐷)
74, 6fmpt3d 7136 1 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) → 𝐺:𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cmpt 5231   × cxp 5687  ccnv 5688  cres 5691  ccom 5693   Fn wfn 6558  wf 6559  (class class class)co 7431  2nd c2nd 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-1st 8013  df-2nd 8014
This theorem is referenced by:  nvinvfval  30669
  Copyright terms: Public domain W3C validator