| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | fmpttd 7048 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 3 | feq1d 6633 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
| 5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5172 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: fmptco 7062 off 7628 caofinvl 7642 curry1f 8036 curry2f 8038 fseqenlem1 9915 pfxf 14588 rpnnen2lem2 16124 1arithlem3 16837 homaf 17937 funcestrcsetclem3 18048 funcsetcestrclem3 18062 prfcl 18109 curf1cl 18134 yonedainv 18187 vrmdf 18766 pmtrf 19368 psgnunilem5 19407 pj1f 19610 vrgpf 19681 gsummptfsadd 19837 gsummptfssub 19862 lspf 20908 uvcff 21729 subrgpsr 21916 mvrf 21923 mhpmulcl 22065 cpm2mf 22668 nmf2 24509 nmof 24635 cphnmf 25123 rrxcph 25320 uniioombllem2 25512 mbfi1fseqlem3 25646 itg2cnlem1 25690 dvmptco 25904 dvle 25940 taylpf 26301 ulmshftlem 26326 ulmshft 26327 ulmdvlem1 26337 psergf 26349 pserdvlem2 26366 logbf 26727 lmif 28764 vtxdgf 29451 brafn 31925 kbop 31931 off2 32621 ofoprabco 32644 indf 32834 tocycf 33084 sgnsf 33129 qqhf 33997 esumcocn 34091 ofcf 34114 mbfmcst 34270 dstrvprob 34483 dstfrvclim1 34489 signstf 34577 fsovfd 44051 dssmapnvod 44059 binomcxplemnotnn0 44395 sge0seq 46490 hoicvrrex 46600 |
| Copyright terms: Public domain | W3C validator |