| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | fmpttd 7090 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 3 | feq1d 6673 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
| 5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fmptco 7104 off 7674 caofinvl 7688 curry1f 8088 curry2f 8090 fseqenlem1 9984 pfxf 14652 rpnnen2lem2 16190 1arithlem3 16903 homaf 17999 funcestrcsetclem3 18110 funcsetcestrclem3 18124 prfcl 18171 curf1cl 18196 yonedainv 18249 vrmdf 18792 pmtrf 19392 psgnunilem5 19431 pj1f 19634 vrgpf 19705 gsummptfsadd 19861 gsummptfssub 19886 lspf 20887 uvcff 21707 subrgpsr 21894 mvrf 21901 mhpmulcl 22043 cpm2mf 22646 nmf2 24488 nmof 24614 cphnmf 25102 rrxcph 25299 uniioombllem2 25491 mbfi1fseqlem3 25625 itg2cnlem1 25669 dvmptco 25883 dvle 25919 taylpf 26280 ulmshftlem 26305 ulmshft 26306 ulmdvlem1 26316 psergf 26328 pserdvlem2 26345 logbf 26706 lmif 28719 vtxdgf 29406 brafn 31883 kbop 31889 off2 32572 ofoprabco 32595 indf 32785 tocycf 33081 sgnsf 33126 qqhf 33983 esumcocn 34077 ofcf 34100 mbfmcst 34257 dstrvprob 34470 dstfrvclim1 34476 signstf 34564 fsovfd 44008 dssmapnvod 44016 binomcxplemnotnn0 44352 sge0seq 46451 hoicvrrex 46561 |
| Copyright terms: Public domain | W3C validator |