| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | fmpttd 7069 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 3 | feq1d 6652 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
| 5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5183 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: fmptco 7083 off 7651 caofinvl 7665 curry1f 8062 curry2f 8064 fseqenlem1 9953 pfxf 14621 rpnnen2lem2 16159 1arithlem3 16872 homaf 17968 funcestrcsetclem3 18079 funcsetcestrclem3 18093 prfcl 18140 curf1cl 18165 yonedainv 18218 vrmdf 18761 pmtrf 19361 psgnunilem5 19400 pj1f 19603 vrgpf 19674 gsummptfsadd 19830 gsummptfssub 19855 lspf 20856 uvcff 21676 subrgpsr 21863 mvrf 21870 mhpmulcl 22012 cpm2mf 22615 nmf2 24457 nmof 24583 cphnmf 25071 rrxcph 25268 uniioombllem2 25460 mbfi1fseqlem3 25594 itg2cnlem1 25638 dvmptco 25852 dvle 25888 taylpf 26249 ulmshftlem 26274 ulmshft 26275 ulmdvlem1 26285 psergf 26297 pserdvlem2 26314 logbf 26675 lmif 28688 vtxdgf 29375 brafn 31849 kbop 31855 off2 32538 ofoprabco 32561 indf 32751 tocycf 33047 sgnsf 33092 qqhf 33949 esumcocn 34043 ofcf 34066 mbfmcst 34223 dstrvprob 34436 dstfrvclim1 34442 signstf 34530 fsovfd 43974 dssmapnvod 43982 binomcxplemnotnn0 44318 sge0seq 46417 hoicvrrex 46527 |
| Copyright terms: Public domain | W3C validator |