MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmpt3d Structured version   Visualization version   GIF version

Theorem fmpt3d 7049
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
fmpt3d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fmpt3d.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fmpt3d (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmpt3d
StepHypRef Expression
1 fmpt3d.2 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
21fmpttd 7048 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
3 fmpt3d.1 . . 3 (𝜑𝐹 = (𝑥𝐴𝐵))
43feq1d 6633 . 2 (𝜑 → (𝐹:𝐴𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶))
52, 4mpbird 257 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cmpt 5172  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  fmptco  7062  off  7628  caofinvl  7642  curry1f  8036  curry2f  8038  fseqenlem1  9915  pfxf  14588  rpnnen2lem2  16124  1arithlem3  16837  homaf  17937  funcestrcsetclem3  18048  funcsetcestrclem3  18062  prfcl  18109  curf1cl  18134  yonedainv  18187  vrmdf  18766  pmtrf  19368  psgnunilem5  19407  pj1f  19610  vrgpf  19681  gsummptfsadd  19837  gsummptfssub  19862  lspf  20908  uvcff  21729  subrgpsr  21916  mvrf  21923  mhpmulcl  22065  cpm2mf  22668  nmf2  24509  nmof  24635  cphnmf  25123  rrxcph  25320  uniioombllem2  25512  mbfi1fseqlem3  25646  itg2cnlem1  25690  dvmptco  25904  dvle  25940  taylpf  26301  ulmshftlem  26326  ulmshft  26327  ulmdvlem1  26337  psergf  26349  pserdvlem2  26366  logbf  26727  lmif  28764  vtxdgf  29451  brafn  31925  kbop  31931  off2  32621  ofoprabco  32644  indf  32834  tocycf  33084  sgnsf  33129  qqhf  33997  esumcocn  34091  ofcf  34114  mbfmcst  34270  dstrvprob  34483  dstfrvclim1  34489  signstf  34577  fsovfd  44051  dssmapnvod  44059  binomcxplemnotnn0  44395  sge0seq  46490  hoicvrrex  46600
  Copyright terms: Public domain W3C validator