![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version |
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
Ref | Expression |
---|---|
fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | fmpttd 7134 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
4 | 3 | feq1d 6720 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ↦ cmpt 5230 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-fun 6564 df-fn 6565 df-f 6566 |
This theorem is referenced by: fmptco 7148 off 7714 caofinvl 7728 curry1f 8129 curry2f 8131 fseqenlem1 10061 pfxf 14714 rpnnen2lem2 16247 1arithlem3 16958 homaf 18083 funcestrcsetclem3 18197 funcsetcestrclem3 18211 prfcl 18258 curf1cl 18284 yonedainv 18337 vrmdf 18883 pmtrf 19487 psgnunilem5 19526 pj1f 19729 vrgpf 19800 gsummptfsadd 19956 gsummptfssub 19981 lspf 20989 uvcff 21828 subrgpsr 22015 mvrf 22022 mhpmulcl 22170 cpm2mf 22773 nmf2 24621 nmof 24755 cphnmf 25242 rrxcph 25439 uniioombllem2 25631 mbfi1fseqlem3 25766 itg2cnlem1 25810 dvmptco 26024 dvle 26060 taylpf 26421 ulmshftlem 26446 ulmshft 26447 ulmdvlem1 26457 psergf 26469 pserdvlem2 26486 logbf 26846 lmif 28807 vtxdgf 29503 brafn 31975 kbop 31981 off2 32657 ofoprabco 32680 tocycf 33119 sgnsf 33164 qqhf 33948 indf 33995 esumcocn 34060 ofcf 34083 mbfmcst 34240 dstrvprob 34452 dstfrvclim1 34458 signstf 34559 fsovfd 44001 dssmapnvod 44009 binomcxplemnotnn0 44351 sge0seq 46401 hoicvrrex 46511 |
Copyright terms: Public domain | W3C validator |