| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | fmpttd 7057 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 3 | feq1d 6641 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
| 5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5176 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 |
| This theorem is referenced by: fmptco 7071 off 7637 caofinvl 7651 curry1f 8045 curry2f 8047 fseqenlem1 9926 pfxf 14595 rpnnen2lem2 16131 1arithlem3 16844 homaf 17945 funcestrcsetclem3 18056 funcsetcestrclem3 18070 prfcl 18117 curf1cl 18142 yonedainv 18195 vrmdf 18774 pmtrf 19375 psgnunilem5 19414 pj1f 19617 vrgpf 19688 gsummptfsadd 19844 gsummptfssub 19869 lspf 20916 uvcff 21737 subrgpsr 21924 mvrf 21931 mhpmulcl 22083 cpm2mf 22687 nmf2 24528 nmof 24654 cphnmf 25142 rrxcph 25339 uniioombllem2 25531 mbfi1fseqlem3 25665 itg2cnlem1 25709 dvmptco 25923 dvle 25959 taylpf 26320 ulmshftlem 26345 ulmshft 26346 ulmdvlem1 26356 psergf 26368 pserdvlem2 26385 logbf 26746 lmif 28783 vtxdgf 29471 brafn 31948 kbop 31954 off2 32645 ofoprabco 32668 indf 32862 tocycf 33127 sgnsf 33172 qqhf 34071 esumcocn 34165 ofcf 34188 mbfmcst 34344 dstrvprob 34557 dstfrvclim1 34563 signstf 34651 fsovfd 44169 dssmapnvod 44177 binomcxplemnotnn0 44513 sge0seq 46606 hoicvrrex 46716 |
| Copyright terms: Public domain | W3C validator |