Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version |
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
Ref | Expression |
---|---|
fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | fmpttd 6989 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
4 | 3 | feq1d 6585 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
5 | 2, 4 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: fmptco 7001 off 7551 caofinvl 7563 curry1f 7946 curry2f 7948 fseqenlem1 9780 pfxf 14393 rpnnen2lem2 15924 1arithlem3 16626 homaf 17745 funcestrcsetclem3 17859 funcsetcestrclem3 17873 prfcl 17920 curf1cl 17946 yonedainv 17999 vrmdf 18497 pmtrf 19063 psgnunilem5 19102 pj1f 19303 vrgpf 19374 gsummptfsadd 19525 gsummptfssub 19550 lspf 20236 uvcff 20998 subrgpsr 21188 mvrf 21193 mhpmulcl 21339 cpm2mf 21901 nmf2 23749 nmof 23883 cphnmf 24359 rrxcph 24556 uniioombllem2 24747 mbfi1fseqlem3 24882 itg2cnlem1 24926 dvmptco 25136 dvle 25171 taylpf 25525 ulmshftlem 25548 ulmshft 25549 ulmdvlem1 25559 psergf 25571 pserdvlem2 25587 logbf 25939 lmif 27146 vtxdgf 27838 brafn 30309 kbop 30315 off2 30978 ofoprabco 31001 tocycf 31384 sgnsf 31429 qqhf 31936 indf 31983 esumcocn 32048 ofcf 32071 mbfmcst 32226 dstrvprob 32438 dstfrvclim1 32444 signstf 32545 fsovfd 41620 dssmapnvod 41628 binomcxplemnotnn0 41974 sge0seq 43984 hoicvrrex 44094 |
Copyright terms: Public domain | W3C validator |