| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | fmpttd 7087 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 3 | feq1d 6670 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
| 5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fmptco 7101 off 7671 caofinvl 7685 curry1f 8085 curry2f 8087 fseqenlem1 9977 pfxf 14645 rpnnen2lem2 16183 1arithlem3 16896 homaf 17992 funcestrcsetclem3 18103 funcsetcestrclem3 18117 prfcl 18164 curf1cl 18189 yonedainv 18242 vrmdf 18785 pmtrf 19385 psgnunilem5 19424 pj1f 19627 vrgpf 19698 gsummptfsadd 19854 gsummptfssub 19879 lspf 20880 uvcff 21700 subrgpsr 21887 mvrf 21894 mhpmulcl 22036 cpm2mf 22639 nmf2 24481 nmof 24607 cphnmf 25095 rrxcph 25292 uniioombllem2 25484 mbfi1fseqlem3 25618 itg2cnlem1 25662 dvmptco 25876 dvle 25912 taylpf 26273 ulmshftlem 26298 ulmshft 26299 ulmdvlem1 26309 psergf 26321 pserdvlem2 26338 logbf 26699 lmif 28712 vtxdgf 29399 brafn 31876 kbop 31882 off2 32565 ofoprabco 32588 indf 32778 tocycf 33074 sgnsf 33119 qqhf 33976 esumcocn 34070 ofcf 34093 mbfmcst 34250 dstrvprob 34463 dstfrvclim1 34469 signstf 34557 fsovfd 44001 dssmapnvod 44009 binomcxplemnotnn0 44345 sge0seq 46444 hoicvrrex 46554 |
| Copyright terms: Public domain | W3C validator |