| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | fmpttd 7053 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 3 | feq1d 6638 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
| 5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fmptco 7067 off 7635 caofinvl 7649 curry1f 8046 curry2f 8048 fseqenlem1 9937 pfxf 14605 rpnnen2lem2 16142 1arithlem3 16855 homaf 17955 funcestrcsetclem3 18066 funcsetcestrclem3 18080 prfcl 18127 curf1cl 18152 yonedainv 18205 vrmdf 18750 pmtrf 19352 psgnunilem5 19391 pj1f 19594 vrgpf 19665 gsummptfsadd 19821 gsummptfssub 19846 lspf 20895 uvcff 21716 subrgpsr 21903 mvrf 21910 mhpmulcl 22052 cpm2mf 22655 nmf2 24497 nmof 24623 cphnmf 25111 rrxcph 25308 uniioombllem2 25500 mbfi1fseqlem3 25634 itg2cnlem1 25678 dvmptco 25892 dvle 25928 taylpf 26289 ulmshftlem 26314 ulmshft 26315 ulmdvlem1 26325 psergf 26337 pserdvlem2 26354 logbf 26715 lmif 28748 vtxdgf 29435 brafn 31909 kbop 31915 off2 32598 ofoprabco 32621 indf 32811 tocycf 33072 sgnsf 33117 qqhf 33955 esumcocn 34049 ofcf 34072 mbfmcst 34229 dstrvprob 34442 dstfrvclim1 34448 signstf 34536 fsovfd 43988 dssmapnvod 43996 binomcxplemnotnn0 44332 sge0seq 46431 hoicvrrex 46541 |
| Copyright terms: Public domain | W3C validator |