![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version |
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
Ref | Expression |
---|---|
fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | fmpttd 7149 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
4 | 3 | feq1d 6732 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fmptco 7163 off 7732 caofinvl 7745 curry1f 8147 curry2f 8149 fseqenlem1 10093 pfxf 14728 rpnnen2lem2 16263 1arithlem3 16972 homaf 18097 funcestrcsetclem3 18211 funcsetcestrclem3 18225 prfcl 18272 curf1cl 18298 yonedainv 18351 vrmdf 18893 pmtrf 19497 psgnunilem5 19536 pj1f 19739 vrgpf 19810 gsummptfsadd 19966 gsummptfssub 19991 lspf 20995 uvcff 21834 subrgpsr 22021 mvrf 22028 mhpmulcl 22176 cpm2mf 22779 nmf2 24627 nmof 24761 cphnmf 25248 rrxcph 25445 uniioombllem2 25637 mbfi1fseqlem3 25772 itg2cnlem1 25816 dvmptco 26030 dvle 26066 taylpf 26425 ulmshftlem 26450 ulmshft 26451 ulmdvlem1 26461 psergf 26473 pserdvlem2 26490 logbf 26850 lmif 28811 vtxdgf 29507 brafn 31979 kbop 31985 off2 32660 ofoprabco 32682 tocycf 33110 sgnsf 33155 qqhf 33932 indf 33979 esumcocn 34044 ofcf 34067 mbfmcst 34224 dstrvprob 34436 dstfrvclim1 34442 signstf 34543 fsovfd 43974 dssmapnvod 43982 binomcxplemnotnn0 44325 sge0seq 46367 hoicvrrex 46477 |
Copyright terms: Public domain | W3C validator |