Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version |
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
Ref | Expression |
---|---|
fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | fmpttd 6986 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
4 | 3 | feq1d 6583 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
5 | 2, 4 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ↦ cmpt 5162 ⟶wf 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6434 df-fn 6435 df-f 6436 |
This theorem is referenced by: fmptco 6998 off 7545 caofinvl 7557 curry1f 7937 curry2f 7939 fseqenlem1 9781 pfxf 14391 rpnnen2lem2 15922 1arithlem3 16624 homaf 17743 funcestrcsetclem3 17857 funcsetcestrclem3 17871 prfcl 17918 curf1cl 17944 yonedainv 17997 vrmdf 18495 pmtrf 19061 psgnunilem5 19100 pj1f 19301 vrgpf 19372 gsummptfsadd 19523 gsummptfssub 19548 lspf 20234 uvcff 20996 subrgpsr 21186 mvrf 21191 mhpmulcl 21337 cpm2mf 21899 nmf2 23747 nmof 23881 cphnmf 24357 rrxcph 24554 uniioombllem2 24745 mbfi1fseqlem3 24880 itg2cnlem1 24924 dvmptco 25134 dvle 25169 taylpf 25523 ulmshftlem 25546 ulmshft 25547 ulmdvlem1 25557 psergf 25569 pserdvlem2 25585 logbf 25937 lmif 27144 vtxdgf 27836 brafn 30305 kbop 30311 off2 30974 ofoprabco 30997 tocycf 31380 sgnsf 31425 qqhf 31932 indf 31979 esumcocn 32044 ofcf 32067 mbfmcst 32222 dstrvprob 32434 dstfrvclim1 32440 signstf 32541 fsovfd 41590 dssmapnvod 41598 binomcxplemnotnn0 41944 sge0seq 43955 hoicvrrex 44065 |
Copyright terms: Public domain | W3C validator |