| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | fmpttd 7104 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 3 | feq1d 6689 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
| 5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: fmptco 7118 off 7687 caofinvl 7701 curry1f 8103 curry2f 8105 fseqenlem1 10036 pfxf 14696 rpnnen2lem2 16231 1arithlem3 16943 homaf 18041 funcestrcsetclem3 18152 funcsetcestrclem3 18166 prfcl 18213 curf1cl 18238 yonedainv 18291 vrmdf 18834 pmtrf 19434 psgnunilem5 19473 pj1f 19676 vrgpf 19747 gsummptfsadd 19903 gsummptfssub 19928 lspf 20929 uvcff 21749 subrgpsr 21936 mvrf 21943 mhpmulcl 22085 cpm2mf 22688 nmf2 24530 nmof 24656 cphnmf 25145 rrxcph 25342 uniioombllem2 25534 mbfi1fseqlem3 25668 itg2cnlem1 25712 dvmptco 25926 dvle 25962 taylpf 26323 ulmshftlem 26348 ulmshft 26349 ulmdvlem1 26359 psergf 26371 pserdvlem2 26388 logbf 26749 lmif 28710 vtxdgf 29397 brafn 31874 kbop 31880 off2 32565 ofoprabco 32588 indf 32778 tocycf 33074 sgnsf 33119 qqhf 33963 esumcocn 34057 ofcf 34080 mbfmcst 34237 dstrvprob 34450 dstfrvclim1 34456 signstf 34544 fsovfd 43983 dssmapnvod 43991 binomcxplemnotnn0 44328 sge0seq 46423 hoicvrrex 46533 |
| Copyright terms: Public domain | W3C validator |