Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpt3d | Structured version Visualization version GIF version |
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
Ref | Expression |
---|---|
fmpt3d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
fmpt3d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpt3d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt3d.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | fmpttd 6971 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
3 | fmpt3d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
4 | 3 | feq1d 6569 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)) |
5 | 2, 4 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: fmptco 6983 off 7529 caofinvl 7541 curry1f 7917 curry2f 7919 fseqenlem1 9711 pfxf 14321 rpnnen2lem2 15852 1arithlem3 16554 homaf 17661 funcestrcsetclem3 17775 funcsetcestrclem3 17789 prfcl 17836 curf1cl 17862 yonedainv 17915 vrmdf 18412 pmtrf 18978 psgnunilem5 19017 pj1f 19218 vrgpf 19289 gsummptfsadd 19440 gsummptfssub 19465 lspf 20151 uvcff 20908 subrgpsr 21098 mvrf 21103 mhpmulcl 21249 cpm2mf 21809 nmf2 23655 nmof 23789 cphnmf 24264 rrxcph 24461 uniioombllem2 24652 mbfi1fseqlem3 24787 itg2cnlem1 24831 dvmptco 25041 dvle 25076 taylpf 25430 ulmshftlem 25453 ulmshft 25454 ulmdvlem1 25464 psergf 25476 pserdvlem2 25492 logbf 25844 lmif 27050 vtxdgf 27741 brafn 30210 kbop 30216 off2 30879 ofoprabco 30903 tocycf 31286 sgnsf 31331 qqhf 31836 indf 31883 esumcocn 31948 ofcf 31971 mbfmcst 32126 dstrvprob 32338 dstfrvclim1 32344 signstf 32445 fsovfd 41509 dssmapnvod 41517 binomcxplemnotnn0 41863 sge0seq 43874 hoicvrrex 43984 |
Copyright terms: Public domain | W3C validator |