![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvinvfval | Structured version Visualization version GIF version |
Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvinvfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvinvfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvinvfval.3 | ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) |
Ref | Expression |
---|---|
nvinvfval | ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
2 | nvinvfval.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
3 | 1, 2 | nvsf 29624 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈)) |
4 | neg1cn 12276 | . . . 4 ⊢ -1 ∈ ℂ | |
5 | nvinvfval.3 | . . . . 5 ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) | |
6 | 5 | curry1f 8043 | . . . 4 ⊢ ((𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ -1 ∈ ℂ) → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈)) |
7 | 3, 4, 6 | sylancl 586 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈)) |
8 | 7 | ffnd 6674 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁 Fn (BaseSet‘𝑈)) |
9 | nvinvfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
10 | 9 | nvgrp 29622 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
11 | 1, 9 | bafval 29609 | . . . 4 ⊢ (BaseSet‘𝑈) = ran 𝐺 |
12 | eqid 2731 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
13 | 11, 12 | grpoinvf 29537 | . . 3 ⊢ (𝐺 ∈ GrpOp → (inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈)) |
14 | f1ofn 6790 | . . 3 ⊢ ((inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈) → (inv‘𝐺) Fn (BaseSet‘𝑈)) | |
15 | 10, 13, 14 | 3syl 18 | . 2 ⊢ (𝑈 ∈ NrmCVec → (inv‘𝐺) Fn (BaseSet‘𝑈)) |
16 | 3 | ffnd 6674 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
17 | 16 | adantr 481 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
18 | 5 | curry1val 8042 | . . . 4 ⊢ ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ -1 ∈ ℂ) → (𝑁‘𝑥) = (-1𝑆𝑥)) |
19 | 17, 4, 18 | sylancl 586 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁‘𝑥) = (-1𝑆𝑥)) |
20 | 1, 9, 2, 12 | nvinv 29644 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (-1𝑆𝑥) = ((inv‘𝐺)‘𝑥)) |
21 | 19, 20 | eqtrd 2771 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁‘𝑥) = ((inv‘𝐺)‘𝑥)) |
22 | 8, 15, 21 | eqfnfvd 6990 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3446 {csn 4591 × cxp 5636 ◡ccnv 5637 ↾ cres 5640 ∘ ccom 5642 Fn wfn 6496 ⟶wf 6497 –1-1-onto→wf1o 6500 ‘cfv 6501 (class class class)co 7362 2nd c2nd 7925 ℂcc 11058 1c1 11061 -cneg 11395 GrpOpcgr 29494 invcgn 29496 NrmCVeccnv 29589 +𝑣 cpv 29590 BaseSetcba 29591 ·𝑠OLD cns 29592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-resscn 11117 ax-1cn 11118 ax-icn 11119 ax-addcl 11120 ax-addrcl 11121 ax-mulcl 11122 ax-mulrcl 11123 ax-mulcom 11124 ax-addass 11125 ax-mulass 11126 ax-distr 11127 ax-i2m1 11128 ax-1ne0 11129 ax-1rid 11130 ax-rnegex 11131 ax-rrecex 11132 ax-cnre 11133 ax-pre-lttri 11134 ax-pre-lttrn 11135 ax-pre-ltadd 11136 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-po 5550 df-so 5551 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-1st 7926 df-2nd 7927 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11200 df-mnf 11201 df-ltxr 11203 df-sub 11396 df-neg 11397 df-grpo 29498 df-gid 29499 df-ginv 29500 df-ablo 29550 df-vc 29564 df-nv 29597 df-va 29600 df-ba 29601 df-sm 29602 df-0v 29603 df-nmcv 29605 |
This theorem is referenced by: hhssabloilem 30266 |
Copyright terms: Public domain | W3C validator |