MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvinvfval Structured version   Visualization version   GIF version

Theorem nvinvfval 29002
Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvinvfval.2 𝐺 = ( +𝑣𝑈)
nvinvfval.4 𝑆 = ( ·𝑠OLD𝑈)
nvinvfval.3 𝑁 = (𝑆(2nd ↾ ({-1} × V)))
Assertion
Ref Expression
nvinvfval (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺))

Proof of Theorem nvinvfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 nvinvfval.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
31, 2nvsf 28981 . . . 4 (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
4 neg1cn 12087 . . . 4 -1 ∈ ℂ
5 nvinvfval.3 . . . . 5 𝑁 = (𝑆(2nd ↾ ({-1} × V)))
65curry1f 7946 . . . 4 ((𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ -1 ∈ ℂ) → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈))
73, 4, 6sylancl 586 . . 3 (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈))
87ffnd 6601 . 2 (𝑈 ∈ NrmCVec → 𝑁 Fn (BaseSet‘𝑈))
9 nvinvfval.2 . . . 4 𝐺 = ( +𝑣𝑈)
109nvgrp 28979 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
111, 9bafval 28966 . . . 4 (BaseSet‘𝑈) = ran 𝐺
12 eqid 2738 . . . 4 (inv‘𝐺) = (inv‘𝐺)
1311, 12grpoinvf 28894 . . 3 (𝐺 ∈ GrpOp → (inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈))
14 f1ofn 6717 . . 3 ((inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈) → (inv‘𝐺) Fn (BaseSet‘𝑈))
1510, 13, 143syl 18 . 2 (𝑈 ∈ NrmCVec → (inv‘𝐺) Fn (BaseSet‘𝑈))
163ffnd 6601 . . . . 5 (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
1716adantr 481 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
185curry1val 7945 . . . 4 ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ -1 ∈ ℂ) → (𝑁𝑥) = (-1𝑆𝑥))
1917, 4, 18sylancl 586 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁𝑥) = (-1𝑆𝑥))
201, 9, 2, 12nvinv 29001 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (-1𝑆𝑥) = ((inv‘𝐺)‘𝑥))
2119, 20eqtrd 2778 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁𝑥) = ((inv‘𝐺)‘𝑥))
228, 15, 21eqfnfvd 6912 1 (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   × cxp 5587  ccnv 5588  cres 5591  ccom 5593   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  2nd c2nd 7830  cc 10869  1c1 10872  -cneg 11206  GrpOpcgr 28851  invcgn 28853  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962
This theorem is referenced by:  hhssabloilem  29623
  Copyright terms: Public domain W3C validator