MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvinvfval Structured version   Visualization version   GIF version

Theorem nvinvfval 30659
Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvinvfval.2 𝐺 = ( +𝑣𝑈)
nvinvfval.4 𝑆 = ( ·𝑠OLD𝑈)
nvinvfval.3 𝑁 = (𝑆(2nd ↾ ({-1} × V)))
Assertion
Ref Expression
nvinvfval (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺))

Proof of Theorem nvinvfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 nvinvfval.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
31, 2nvsf 30638 . . . 4 (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
4 neg1cn 12380 . . . 4 -1 ∈ ℂ
5 nvinvfval.3 . . . . 5 𝑁 = (𝑆(2nd ↾ ({-1} × V)))
65curry1f 8131 . . . 4 ((𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ -1 ∈ ℂ) → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈))
73, 4, 6sylancl 586 . . 3 (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈))
87ffnd 6737 . 2 (𝑈 ∈ NrmCVec → 𝑁 Fn (BaseSet‘𝑈))
9 nvinvfval.2 . . . 4 𝐺 = ( +𝑣𝑈)
109nvgrp 30636 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
111, 9bafval 30623 . . . 4 (BaseSet‘𝑈) = ran 𝐺
12 eqid 2737 . . . 4 (inv‘𝐺) = (inv‘𝐺)
1311, 12grpoinvf 30551 . . 3 (𝐺 ∈ GrpOp → (inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈))
14 f1ofn 6849 . . 3 ((inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈) → (inv‘𝐺) Fn (BaseSet‘𝑈))
1510, 13, 143syl 18 . 2 (𝑈 ∈ NrmCVec → (inv‘𝐺) Fn (BaseSet‘𝑈))
163ffnd 6737 . . . . 5 (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
1716adantr 480 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → 𝑆 Fn (ℂ × (BaseSet‘𝑈)))
185curry1val 8130 . . . 4 ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ -1 ∈ ℂ) → (𝑁𝑥) = (-1𝑆𝑥))
1917, 4, 18sylancl 586 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁𝑥) = (-1𝑆𝑥))
201, 9, 2, 12nvinv 30658 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (-1𝑆𝑥) = ((inv‘𝐺)‘𝑥))
2119, 20eqtrd 2777 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁𝑥) = ((inv‘𝐺)‘𝑥))
228, 15, 21eqfnfvd 7054 1 (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  {csn 4626   × cxp 5683  ccnv 5684  cres 5687  ccom 5689   Fn wfn 6556  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  2nd c2nd 8013  cc 11153  1c1 11156  -cneg 11493  GrpOpcgr 30508  invcgn 30510  NrmCVeccnv 30603   +𝑣 cpv 30604  BaseSetcba 30605   ·𝑠OLD cns 30606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-grpo 30512  df-gid 30513  df-ginv 30514  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619
This theorem is referenced by:  hhssabloilem  31280
  Copyright terms: Public domain W3C validator