![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvinvfval | Structured version Visualization version GIF version |
Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvinvfval.2 | β’ πΊ = ( +π£ βπ) |
nvinvfval.4 | β’ π = ( Β·π OLD βπ) |
nvinvfval.3 | β’ π = (π β β‘(2nd βΎ ({-1} Γ V))) |
Ref | Expression |
---|---|
nvinvfval | β’ (π β NrmCVec β π = (invβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . 5 β’ (BaseSetβπ) = (BaseSetβπ) | |
2 | nvinvfval.4 | . . . . 5 β’ π = ( Β·π OLD βπ) | |
3 | 1, 2 | nvsf 29872 | . . . 4 β’ (π β NrmCVec β π:(β Γ (BaseSetβπ))βΆ(BaseSetβπ)) |
4 | neg1cn 12326 | . . . 4 β’ -1 β β | |
5 | nvinvfval.3 | . . . . 5 β’ π = (π β β‘(2nd βΎ ({-1} Γ V))) | |
6 | 5 | curry1f 8092 | . . . 4 β’ ((π:(β Γ (BaseSetβπ))βΆ(BaseSetβπ) β§ -1 β β) β π:(BaseSetβπ)βΆ(BaseSetβπ)) |
7 | 3, 4, 6 | sylancl 587 | . . 3 β’ (π β NrmCVec β π:(BaseSetβπ)βΆ(BaseSetβπ)) |
8 | 7 | ffnd 6719 | . 2 β’ (π β NrmCVec β π Fn (BaseSetβπ)) |
9 | nvinvfval.2 | . . . 4 β’ πΊ = ( +π£ βπ) | |
10 | 9 | nvgrp 29870 | . . 3 β’ (π β NrmCVec β πΊ β GrpOp) |
11 | 1, 9 | bafval 29857 | . . . 4 β’ (BaseSetβπ) = ran πΊ |
12 | eqid 2733 | . . . 4 β’ (invβπΊ) = (invβπΊ) | |
13 | 11, 12 | grpoinvf 29785 | . . 3 β’ (πΊ β GrpOp β (invβπΊ):(BaseSetβπ)β1-1-ontoβ(BaseSetβπ)) |
14 | f1ofn 6835 | . . 3 β’ ((invβπΊ):(BaseSetβπ)β1-1-ontoβ(BaseSetβπ) β (invβπΊ) Fn (BaseSetβπ)) | |
15 | 10, 13, 14 | 3syl 18 | . 2 β’ (π β NrmCVec β (invβπΊ) Fn (BaseSetβπ)) |
16 | 3 | ffnd 6719 | . . . . 5 β’ (π β NrmCVec β π Fn (β Γ (BaseSetβπ))) |
17 | 16 | adantr 482 | . . . 4 β’ ((π β NrmCVec β§ π₯ β (BaseSetβπ)) β π Fn (β Γ (BaseSetβπ))) |
18 | 5 | curry1val 8091 | . . . 4 β’ ((π Fn (β Γ (BaseSetβπ)) β§ -1 β β) β (πβπ₯) = (-1ππ₯)) |
19 | 17, 4, 18 | sylancl 587 | . . 3 β’ ((π β NrmCVec β§ π₯ β (BaseSetβπ)) β (πβπ₯) = (-1ππ₯)) |
20 | 1, 9, 2, 12 | nvinv 29892 | . . 3 β’ ((π β NrmCVec β§ π₯ β (BaseSetβπ)) β (-1ππ₯) = ((invβπΊ)βπ₯)) |
21 | 19, 20 | eqtrd 2773 | . 2 β’ ((π β NrmCVec β§ π₯ β (BaseSetβπ)) β (πβπ₯) = ((invβπΊ)βπ₯)) |
22 | 8, 15, 21 | eqfnfvd 7036 | 1 β’ (π β NrmCVec β π = (invβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 {csn 4629 Γ cxp 5675 β‘ccnv 5676 βΎ cres 5679 β ccom 5681 Fn wfn 6539 βΆwf 6540 β1-1-ontoβwf1o 6543 βcfv 6544 (class class class)co 7409 2nd c2nd 7974 βcc 11108 1c1 11111 -cneg 11445 GrpOpcgr 29742 invcgn 29744 NrmCVeccnv 29837 +π£ cpv 29838 BaseSetcba 29839 Β·π OLD cns 29840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-neg 11447 df-grpo 29746 df-gid 29747 df-ginv 29748 df-ablo 29798 df-vc 29812 df-nv 29845 df-va 29848 df-ba 29849 df-sm 29850 df-0v 29851 df-nmcv 29853 |
This theorem is referenced by: hhssabloilem 30514 |
Copyright terms: Public domain | W3C validator |