![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvinvfval | Structured version Visualization version GIF version |
Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvinvfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvinvfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvinvfval.3 | ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) |
Ref | Expression |
---|---|
nvinvfval | ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
2 | nvinvfval.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
3 | 1, 2 | nvsf 30651 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈)) |
4 | neg1cn 12407 | . . . 4 ⊢ -1 ∈ ℂ | |
5 | nvinvfval.3 | . . . . 5 ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) | |
6 | 5 | curry1f 8147 | . . . 4 ⊢ ((𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ -1 ∈ ℂ) → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈)) |
7 | 3, 4, 6 | sylancl 585 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈)) |
8 | 7 | ffnd 6748 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁 Fn (BaseSet‘𝑈)) |
9 | nvinvfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
10 | 9 | nvgrp 30649 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
11 | 1, 9 | bafval 30636 | . . . 4 ⊢ (BaseSet‘𝑈) = ran 𝐺 |
12 | eqid 2740 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
13 | 11, 12 | grpoinvf 30564 | . . 3 ⊢ (𝐺 ∈ GrpOp → (inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈)) |
14 | f1ofn 6863 | . . 3 ⊢ ((inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈) → (inv‘𝐺) Fn (BaseSet‘𝑈)) | |
15 | 10, 13, 14 | 3syl 18 | . 2 ⊢ (𝑈 ∈ NrmCVec → (inv‘𝐺) Fn (BaseSet‘𝑈)) |
16 | 3 | ffnd 6748 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
18 | 5 | curry1val 8146 | . . . 4 ⊢ ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ -1 ∈ ℂ) → (𝑁‘𝑥) = (-1𝑆𝑥)) |
19 | 17, 4, 18 | sylancl 585 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁‘𝑥) = (-1𝑆𝑥)) |
20 | 1, 9, 2, 12 | nvinv 30671 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (-1𝑆𝑥) = ((inv‘𝐺)‘𝑥)) |
21 | 19, 20 | eqtrd 2780 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁‘𝑥) = ((inv‘𝐺)‘𝑥)) |
22 | 8, 15, 21 | eqfnfvd 7067 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 × cxp 5698 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 2nd c2nd 8029 ℂcc 11182 1c1 11185 -cneg 11521 GrpOpcgr 30521 invcgn 30523 NrmCVeccnv 30616 +𝑣 cpv 30617 BaseSetcba 30618 ·𝑠OLD cns 30619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 |
This theorem is referenced by: hhssabloilem 31293 |
Copyright terms: Public domain | W3C validator |