| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvinvfval | Structured version Visualization version GIF version | ||
| Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvinvfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvinvfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvinvfval.3 | ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) |
| Ref | Expression |
|---|---|
| nvinvfval | ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 2 | nvinvfval.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 3 | 1, 2 | nvsf 30548 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈)) |
| 4 | neg1cn 12171 | . . . 4 ⊢ -1 ∈ ℂ | |
| 5 | nvinvfval.3 | . . . . 5 ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) | |
| 6 | 5 | curry1f 8085 | . . . 4 ⊢ ((𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ -1 ∈ ℂ) → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈)) |
| 7 | 3, 4, 6 | sylancl 586 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈)) |
| 8 | 7 | ffnd 6689 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁 Fn (BaseSet‘𝑈)) |
| 9 | nvinvfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 10 | 9 | nvgrp 30546 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
| 11 | 1, 9 | bafval 30533 | . . . 4 ⊢ (BaseSet‘𝑈) = ran 𝐺 |
| 12 | eqid 2729 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 13 | 11, 12 | grpoinvf 30461 | . . 3 ⊢ (𝐺 ∈ GrpOp → (inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈)) |
| 14 | f1ofn 6801 | . . 3 ⊢ ((inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈) → (inv‘𝐺) Fn (BaseSet‘𝑈)) | |
| 15 | 10, 13, 14 | 3syl 18 | . 2 ⊢ (𝑈 ∈ NrmCVec → (inv‘𝐺) Fn (BaseSet‘𝑈)) |
| 16 | 3 | ffnd 6689 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
| 18 | 5 | curry1val 8084 | . . . 4 ⊢ ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ -1 ∈ ℂ) → (𝑁‘𝑥) = (-1𝑆𝑥)) |
| 19 | 17, 4, 18 | sylancl 586 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁‘𝑥) = (-1𝑆𝑥)) |
| 20 | 1, 9, 2, 12 | nvinv 30568 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (-1𝑆𝑥) = ((inv‘𝐺)‘𝑥)) |
| 21 | 19, 20 | eqtrd 2764 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁‘𝑥) = ((inv‘𝐺)‘𝑥)) |
| 22 | 8, 15, 21 | eqfnfvd 7006 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 × cxp 5636 ◡ccnv 5637 ↾ cres 5640 ∘ ccom 5642 Fn wfn 6506 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 2nd c2nd 7967 ℂcc 11066 1c1 11069 -cneg 11406 GrpOpcgr 30418 invcgn 30420 NrmCVeccnv 30513 +𝑣 cpv 30514 BaseSetcba 30515 ·𝑠OLD cns 30516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-grpo 30422 df-gid 30423 df-ginv 30424 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-nmcv 30529 |
| This theorem is referenced by: hhssabloilem 31190 |
| Copyright terms: Public domain | W3C validator |