| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvinvfval | Structured version Visualization version GIF version | ||
| Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvinvfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvinvfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvinvfval.3 | ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) |
| Ref | Expression |
|---|---|
| nvinvfval | ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 2 | nvinvfval.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 3 | 1, 2 | nvsf 30591 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈)) |
| 4 | neg1cn 12105 | . . . 4 ⊢ -1 ∈ ℂ | |
| 5 | nvinvfval.3 | . . . . 5 ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) | |
| 6 | 5 | curry1f 8031 | . . . 4 ⊢ ((𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ -1 ∈ ℂ) → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈)) |
| 7 | 3, 4, 6 | sylancl 586 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈)) |
| 8 | 7 | ffnd 6647 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁 Fn (BaseSet‘𝑈)) |
| 9 | nvinvfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 10 | 9 | nvgrp 30589 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
| 11 | 1, 9 | bafval 30576 | . . . 4 ⊢ (BaseSet‘𝑈) = ran 𝐺 |
| 12 | eqid 2731 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 13 | 11, 12 | grpoinvf 30504 | . . 3 ⊢ (𝐺 ∈ GrpOp → (inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈)) |
| 14 | f1ofn 6759 | . . 3 ⊢ ((inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈) → (inv‘𝐺) Fn (BaseSet‘𝑈)) | |
| 15 | 10, 13, 14 | 3syl 18 | . 2 ⊢ (𝑈 ∈ NrmCVec → (inv‘𝐺) Fn (BaseSet‘𝑈)) |
| 16 | 3 | ffnd 6647 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
| 18 | 5 | curry1val 8030 | . . . 4 ⊢ ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ -1 ∈ ℂ) → (𝑁‘𝑥) = (-1𝑆𝑥)) |
| 19 | 17, 4, 18 | sylancl 586 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁‘𝑥) = (-1𝑆𝑥)) |
| 20 | 1, 9, 2, 12 | nvinv 30611 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (-1𝑆𝑥) = ((inv‘𝐺)‘𝑥)) |
| 21 | 19, 20 | eqtrd 2766 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁‘𝑥) = ((inv‘𝐺)‘𝑥)) |
| 22 | 8, 15, 21 | eqfnfvd 6962 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4571 × cxp 5609 ◡ccnv 5610 ↾ cres 5613 ∘ ccom 5615 Fn wfn 6471 ⟶wf 6472 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 2nd c2nd 7915 ℂcc 10999 1c1 11002 -cneg 11340 GrpOpcgr 30461 invcgn 30463 NrmCVeccnv 30556 +𝑣 cpv 30557 BaseSetcba 30558 ·𝑠OLD cns 30559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-neg 11342 df-grpo 30465 df-gid 30466 df-ginv 30467 df-ablo 30517 df-vc 30531 df-nv 30564 df-va 30567 df-ba 30568 df-sm 30569 df-0v 30570 df-nmcv 30572 |
| This theorem is referenced by: hhssabloilem 31233 |
| Copyright terms: Public domain | W3C validator |