| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvinvfval | Structured version Visualization version GIF version | ||
| Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvinvfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvinvfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvinvfval.3 | ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) |
| Ref | Expression |
|---|---|
| nvinvfval | ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 2 | nvinvfval.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 3 | 1, 2 | nvsf 30563 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈)) |
| 4 | neg1cn 12113 | . . . 4 ⊢ -1 ∈ ℂ | |
| 5 | nvinvfval.3 | . . . . 5 ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) | |
| 6 | 5 | curry1f 8039 | . . . 4 ⊢ ((𝑆:(ℂ × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ -1 ∈ ℂ) → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈)) |
| 7 | 3, 4, 6 | sylancl 586 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶(BaseSet‘𝑈)) |
| 8 | 7 | ffnd 6653 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁 Fn (BaseSet‘𝑈)) |
| 9 | nvinvfval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 10 | 9 | nvgrp 30561 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
| 11 | 1, 9 | bafval 30548 | . . . 4 ⊢ (BaseSet‘𝑈) = ran 𝐺 |
| 12 | eqid 2729 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 13 | 11, 12 | grpoinvf 30476 | . . 3 ⊢ (𝐺 ∈ GrpOp → (inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈)) |
| 14 | f1ofn 6765 | . . 3 ⊢ ((inv‘𝐺):(BaseSet‘𝑈)–1-1-onto→(BaseSet‘𝑈) → (inv‘𝐺) Fn (BaseSet‘𝑈)) | |
| 15 | 10, 13, 14 | 3syl 18 | . 2 ⊢ (𝑈 ∈ NrmCVec → (inv‘𝐺) Fn (BaseSet‘𝑈)) |
| 16 | 3 | ffnd 6653 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → 𝑆 Fn (ℂ × (BaseSet‘𝑈))) |
| 18 | 5 | curry1val 8038 | . . . 4 ⊢ ((𝑆 Fn (ℂ × (BaseSet‘𝑈)) ∧ -1 ∈ ℂ) → (𝑁‘𝑥) = (-1𝑆𝑥)) |
| 19 | 17, 4, 18 | sylancl 586 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁‘𝑥) = (-1𝑆𝑥)) |
| 20 | 1, 9, 2, 12 | nvinv 30583 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (-1𝑆𝑥) = ((inv‘𝐺)‘𝑥)) |
| 21 | 19, 20 | eqtrd 2764 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁‘𝑥) = ((inv‘𝐺)‘𝑥)) |
| 22 | 8, 15, 21 | eqfnfvd 6968 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 × cxp 5617 ◡ccnv 5618 ↾ cres 5621 ∘ ccom 5623 Fn wfn 6477 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 2nd c2nd 7923 ℂcc 11007 1c1 11010 -cneg 11348 GrpOpcgr 30433 invcgn 30435 NrmCVeccnv 30528 +𝑣 cpv 30529 BaseSetcba 30530 ·𝑠OLD cns 30531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 df-grpo 30437 df-gid 30438 df-ginv 30439 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-nmcv 30544 |
| This theorem is referenced by: hhssabloilem 31205 |
| Copyright terms: Public domain | W3C validator |