![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvinvfval | Structured version Visualization version GIF version |
Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvinvfval.2 | β’ πΊ = ( +π£ βπ) |
nvinvfval.4 | β’ π = ( Β·π OLD βπ) |
nvinvfval.3 | β’ π = (π β β‘(2nd βΎ ({-1} Γ V))) |
Ref | Expression |
---|---|
nvinvfval | β’ (π β NrmCVec β π = (invβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . . . 5 β’ (BaseSetβπ) = (BaseSetβπ) | |
2 | nvinvfval.4 | . . . . 5 β’ π = ( Β·π OLD βπ) | |
3 | 1, 2 | nvsf 30139 | . . . 4 β’ (π β NrmCVec β π:(β Γ (BaseSetβπ))βΆ(BaseSetβπ)) |
4 | neg1cn 12330 | . . . 4 β’ -1 β β | |
5 | nvinvfval.3 | . . . . 5 β’ π = (π β β‘(2nd βΎ ({-1} Γ V))) | |
6 | 5 | curry1f 8094 | . . . 4 β’ ((π:(β Γ (BaseSetβπ))βΆ(BaseSetβπ) β§ -1 β β) β π:(BaseSetβπ)βΆ(BaseSetβπ)) |
7 | 3, 4, 6 | sylancl 584 | . . 3 β’ (π β NrmCVec β π:(BaseSetβπ)βΆ(BaseSetβπ)) |
8 | 7 | ffnd 6717 | . 2 β’ (π β NrmCVec β π Fn (BaseSetβπ)) |
9 | nvinvfval.2 | . . . 4 β’ πΊ = ( +π£ βπ) | |
10 | 9 | nvgrp 30137 | . . 3 β’ (π β NrmCVec β πΊ β GrpOp) |
11 | 1, 9 | bafval 30124 | . . . 4 β’ (BaseSetβπ) = ran πΊ |
12 | eqid 2730 | . . . 4 β’ (invβπΊ) = (invβπΊ) | |
13 | 11, 12 | grpoinvf 30052 | . . 3 β’ (πΊ β GrpOp β (invβπΊ):(BaseSetβπ)β1-1-ontoβ(BaseSetβπ)) |
14 | f1ofn 6833 | . . 3 β’ ((invβπΊ):(BaseSetβπ)β1-1-ontoβ(BaseSetβπ) β (invβπΊ) Fn (BaseSetβπ)) | |
15 | 10, 13, 14 | 3syl 18 | . 2 β’ (π β NrmCVec β (invβπΊ) Fn (BaseSetβπ)) |
16 | 3 | ffnd 6717 | . . . . 5 β’ (π β NrmCVec β π Fn (β Γ (BaseSetβπ))) |
17 | 16 | adantr 479 | . . . 4 β’ ((π β NrmCVec β§ π₯ β (BaseSetβπ)) β π Fn (β Γ (BaseSetβπ))) |
18 | 5 | curry1val 8093 | . . . 4 β’ ((π Fn (β Γ (BaseSetβπ)) β§ -1 β β) β (πβπ₯) = (-1ππ₯)) |
19 | 17, 4, 18 | sylancl 584 | . . 3 β’ ((π β NrmCVec β§ π₯ β (BaseSetβπ)) β (πβπ₯) = (-1ππ₯)) |
20 | 1, 9, 2, 12 | nvinv 30159 | . . 3 β’ ((π β NrmCVec β§ π₯ β (BaseSetβπ)) β (-1ππ₯) = ((invβπΊ)βπ₯)) |
21 | 19, 20 | eqtrd 2770 | . 2 β’ ((π β NrmCVec β§ π₯ β (BaseSetβπ)) β (πβπ₯) = ((invβπΊ)βπ₯)) |
22 | 8, 15, 21 | eqfnfvd 7034 | 1 β’ (π β NrmCVec β π = (invβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 Vcvv 3472 {csn 4627 Γ cxp 5673 β‘ccnv 5674 βΎ cres 5677 β ccom 5679 Fn wfn 6537 βΆwf 6538 β1-1-ontoβwf1o 6541 βcfv 6542 (class class class)co 7411 2nd c2nd 7976 βcc 11110 1c1 11113 -cneg 11449 GrpOpcgr 30009 invcgn 30011 NrmCVeccnv 30104 +π£ cpv 30105 BaseSetcba 30106 Β·π OLD cns 30107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-neg 11451 df-grpo 30013 df-gid 30014 df-ginv 30015 df-ablo 30065 df-vc 30079 df-nv 30112 df-va 30115 df-ba 30116 df-sm 30117 df-0v 30118 df-nmcv 30120 |
This theorem is referenced by: hhssabloilem 30781 |
Copyright terms: Public domain | W3C validator |