Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrletrN Structured version   Visualization version   GIF version

Theorem cvrletrN 39261
Description: Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrletrN ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑌 𝑍) → 𝑋 < 𝑍))

Proof of Theorem cvrletrN
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ Poset)
2 simplr1 1216 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋𝐵)
3 simplr2 1217 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → 𝑌𝐵)
4 simpr 484 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋𝐶𝑌)
5 cvrletr.b . . . . 5 𝐵 = (Base‘𝐾)
6 cvrletr.s . . . . 5 < = (lt‘𝐾)
7 cvrletr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
85, 6, 7cvrlt 39258 . . . 4 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
91, 2, 3, 4, 8syl31anc 1375 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
10 cvrletr.l . . . . 5 = (le‘𝐾)
115, 10, 6pltletr 18308 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 𝑍) → 𝑋 < 𝑍))
1211adantr 480 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑌𝑌 𝑍) → 𝑋 < 𝑍))
139, 12mpand 695 . 2 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → (𝑌 𝑍𝑋 < 𝑍))
1413expimpd 453 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑌 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5109  cfv 6513  Basecbs 17185  lecple 17233  Posetcpo 18274  ltcplt 18275  ccvr 39250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-proset 18261  df-poset 18280  df-plt 18295  df-covers 39254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator