Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrletrN Structured version   Visualization version   GIF version

Theorem cvrletrN 39233
Description: Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrletrN ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑌 𝑍) → 𝑋 < 𝑍))

Proof of Theorem cvrletrN
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ Poset)
2 simplr1 1215 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋𝐵)
3 simplr2 1216 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → 𝑌𝐵)
4 simpr 484 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋𝐶𝑌)
5 cvrletr.b . . . . 5 𝐵 = (Base‘𝐾)
6 cvrletr.s . . . . 5 < = (lt‘𝐾)
7 cvrletr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
85, 6, 7cvrlt 39230 . . . 4 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
91, 2, 3, 4, 8syl31anc 1374 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
10 cvrletr.l . . . . 5 = (le‘𝐾)
115, 10, 6pltletr 18357 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 𝑍) → 𝑋 < 𝑍))
1211adantr 480 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑌𝑌 𝑍) → 𝑋 < 𝑍))
139, 12mpand 695 . 2 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → (𝑌 𝑍𝑋 < 𝑍))
1413expimpd 453 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑌 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  Basecbs 17229  lecple 17280  Posetcpo 18323  ltcplt 18324  ccvr 39222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-proset 18310  df-poset 18329  df-plt 18344  df-covers 39226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator