![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrletrN | Structured version Visualization version GIF version |
Description: Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvrletr.b | β’ π΅ = (BaseβπΎ) |
cvrletr.l | β’ β€ = (leβπΎ) |
cvrletr.s | β’ < = (ltβπΎ) |
cvrletr.c | β’ πΆ = ( β βπΎ) |
Ref | Expression |
---|---|
cvrletrN | β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((ππΆπ β§ π β€ π) β π < π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . . . 4 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ ππΆπ) β πΎ β Poset) | |
2 | simplr1 1214 | . . . 4 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ ππΆπ) β π β π΅) | |
3 | simplr2 1215 | . . . 4 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ ππΆπ) β π β π΅) | |
4 | simpr 484 | . . . 4 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ ππΆπ) β ππΆπ) | |
5 | cvrletr.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
6 | cvrletr.s | . . . . 5 β’ < = (ltβπΎ) | |
7 | cvrletr.c | . . . . 5 β’ πΆ = ( β βπΎ) | |
8 | 5, 6, 7 | cvrlt 38444 | . . . 4 β’ (((πΎ β Poset β§ π β π΅ β§ π β π΅) β§ ππΆπ) β π < π) |
9 | 1, 2, 3, 4, 8 | syl31anc 1372 | . . 3 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ ππΆπ) β π < π) |
10 | cvrletr.l | . . . . 5 β’ β€ = (leβπΎ) | |
11 | 5, 10, 6 | pltletr 18301 | . . . 4 β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π < π β§ π β€ π) β π < π)) |
12 | 11 | adantr 480 | . . 3 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ ππΆπ) β ((π < π β§ π β€ π) β π < π)) |
13 | 9, 12 | mpand 692 | . 2 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ ππΆπ) β (π β€ π β π < π)) |
14 | 13 | expimpd 453 | 1 β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((ππΆπ β§ π β€ π) β π < π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5148 βcfv 6543 Basecbs 17149 lecple 17209 Posetcpo 18265 ltcplt 18266 β ccvr 38436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-proset 18253 df-poset 18271 df-plt 18288 df-covers 38440 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |