| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrletrN | Structured version Visualization version GIF version | ||
| Description: Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvrletr.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvrletr.l | ⊢ ≤ = (le‘𝐾) |
| cvrletr.s | ⊢ < = (lt‘𝐾) |
| cvrletr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| cvrletrN | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ Poset) | |
| 2 | simplr1 1215 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋 ∈ 𝐵) | |
| 3 | simplr2 1216 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝐵) | |
| 4 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋𝐶𝑌) | |
| 5 | cvrletr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | cvrletr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 7 | cvrletr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 8 | 5, 6, 7 | cvrlt 39230 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
| 9 | 1, 2, 3, 4, 8 | syl31anc 1374 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
| 10 | cvrletr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 11 | 5, 10, 6 | pltletr 18357 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
| 12 | 11 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
| 13 | 9, 12 | mpand 695 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → (𝑌 ≤ 𝑍 → 𝑋 < 𝑍)) |
| 14 | 13 | expimpd 453 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 Basecbs 17229 lecple 17280 Posetcpo 18323 ltcplt 18324 ⋖ ccvr 39222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-proset 18310 df-poset 18329 df-plt 18344 df-covers 39226 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |