Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrletrN | Structured version Visualization version GIF version |
Description: Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvrletr.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrletr.l | ⊢ ≤ = (le‘𝐾) |
cvrletr.s | ⊢ < = (lt‘𝐾) |
cvrletr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrletrN | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 765 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ Poset) | |
2 | simplr1 1215 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋 ∈ 𝐵) | |
3 | simplr2 1216 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝐵) | |
4 | simpr 486 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋𝐶𝑌) | |
5 | cvrletr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | cvrletr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
7 | cvrletr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | 5, 6, 7 | cvrlt 37326 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
9 | 1, 2, 3, 4, 8 | syl31anc 1373 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
10 | cvrletr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
11 | 5, 10, 6 | pltletr 18106 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
12 | 11 | adantr 482 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
13 | 9, 12 | mpand 693 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → (𝑌 ≤ 𝑍 → 𝑋 < 𝑍)) |
14 | 13 | expimpd 455 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 Basecbs 16957 lecple 17014 Posetcpo 18070 ltcplt 18071 ⋖ ccvr 37318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-proset 18058 df-poset 18076 df-plt 18093 df-covers 37322 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |