Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrletrN | Structured version Visualization version GIF version |
Description: Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvrletr.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrletr.l | ⊢ ≤ = (le‘𝐾) |
cvrletr.s | ⊢ < = (lt‘𝐾) |
cvrletr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrletrN | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ Poset) | |
2 | simplr1 1213 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋 ∈ 𝐵) | |
3 | simplr2 1214 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝐵) | |
4 | simpr 489 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋𝐶𝑌) | |
5 | cvrletr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | cvrletr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
7 | cvrletr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | 5, 6, 7 | cvrlt 36839 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
9 | 1, 2, 3, 4, 8 | syl31anc 1371 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
10 | cvrletr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
11 | 5, 10, 6 | pltletr 17640 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
12 | 11 | adantr 485 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
13 | 9, 12 | mpand 695 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑌) → (𝑌 ≤ 𝑍 → 𝑋 < 𝑍)) |
14 | 13 | expimpd 458 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 class class class wbr 5033 ‘cfv 6336 Basecbs 16534 lecple 16623 Posetcpo 17609 ltcplt 17610 ⋖ ccvr 36831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6295 df-fun 6338 df-fv 6344 df-proset 17597 df-poset 17615 df-plt 17627 df-covers 36835 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |