MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltletr Structured version   Visualization version   GIF version

Theorem pltletr 18335
Description: Transitive law for chained "less than" and "less than or equal to". (psssstr 4104 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltletr.b 𝐵 = (Base‘𝐾)
pltletr.l = (le‘𝐾)
pltletr.s < = (lt‘𝐾)
Assertion
Ref Expression
pltletr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 𝑍) → 𝑋 < 𝑍))

Proof of Theorem pltletr
StepHypRef Expression
1 pltletr.b . . . . . 6 𝐵 = (Base‘𝐾)
2 pltletr.l . . . . . 6 = (le‘𝐾)
3 pltletr.s . . . . . 6 < = (lt‘𝐾)
41, 2, 3pleval2 18329 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍 ↔ (𝑌 < 𝑍𝑌 = 𝑍)))
543adant3r1 1180 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍 ↔ (𝑌 < 𝑍𝑌 = 𝑍)))
65adantr 480 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 𝑍 ↔ (𝑌 < 𝑍𝑌 = 𝑍)))
71, 3plttr 18334 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
87expdimp 452 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 < 𝑍𝑋 < 𝑍))
9 breq2 5152 . . . . . 6 (𝑌 = 𝑍 → (𝑋 < 𝑌𝑋 < 𝑍))
109biimpcd 248 . . . . 5 (𝑋 < 𝑌 → (𝑌 = 𝑍𝑋 < 𝑍))
1110adantl 481 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 = 𝑍𝑋 < 𝑍))
128, 11jaod 858 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → ((𝑌 < 𝑍𝑌 = 𝑍) → 𝑋 < 𝑍))
136, 12sylbid 239 . 2 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 𝑍𝑋 < 𝑍))
1413expimpd 453 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5148  cfv 6548  Basecbs 17180  lecple 17240  Posetcpo 18299  ltcplt 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-proset 18287  df-poset 18305  df-plt 18322
This theorem is referenced by:  cvrletrN  38745  atlen0  38782  atlelt  38911  2atlt  38912  ps-2  38951  llnnleat  38986  lplnnle2at  39014  lvolnle3at  39055  dalemcea  39133  2atm2atN  39258  dia2dimlem2  40538  dia2dimlem3  40539
  Copyright terms: Public domain W3C validator