| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltletr | Structured version Visualization version GIF version | ||
| Description: Transitive law for chained "less than" and "less than or equal to". (psssstr 4059 analog.) (Contributed by NM, 2-Dec-2011.) |
| Ref | Expression |
|---|---|
| pltletr.b | ⊢ 𝐵 = (Base‘𝐾) |
| pltletr.l | ⊢ ≤ = (le‘𝐾) |
| pltletr.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltletr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltletr.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | pltletr.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 3 | pltletr.s | . . . . . 6 ⊢ < = (lt‘𝐾) | |
| 4 | 1, 2, 3 | pleval2 18238 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ≤ 𝑍 ↔ (𝑌 < 𝑍 ∨ 𝑌 = 𝑍))) |
| 5 | 4 | 3adant3r1 1183 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ≤ 𝑍 ↔ (𝑌 < 𝑍 ∨ 𝑌 = 𝑍))) |
| 6 | 5 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 ≤ 𝑍 ↔ (𝑌 < 𝑍 ∨ 𝑌 = 𝑍))) |
| 7 | 1, 3 | plttr 18243 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
| 8 | 7 | expdimp 452 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 < 𝑍 → 𝑋 < 𝑍)) |
| 9 | breq2 5095 | . . . . . 6 ⊢ (𝑌 = 𝑍 → (𝑋 < 𝑌 ↔ 𝑋 < 𝑍)) | |
| 10 | 9 | biimpcd 249 | . . . . 5 ⊢ (𝑋 < 𝑌 → (𝑌 = 𝑍 → 𝑋 < 𝑍)) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 = 𝑍 → 𝑋 < 𝑍)) |
| 12 | 8, 11 | jaod 859 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → ((𝑌 < 𝑍 ∨ 𝑌 = 𝑍) → 𝑋 < 𝑍)) |
| 13 | 6, 12 | sylbid 240 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 ≤ 𝑍 → 𝑋 < 𝑍)) |
| 14 | 13 | expimpd 453 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 Basecbs 17117 lecple 17165 Posetcpo 18210 ltcplt 18211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-proset 18197 df-poset 18216 df-plt 18231 |
| This theorem is referenced by: cvrletrN 39311 atlen0 39348 atlelt 39476 2atlt 39477 ps-2 39516 llnnleat 39551 lplnnle2at 39579 lvolnle3at 39620 dalemcea 39698 2atm2atN 39823 dia2dimlem2 41103 dia2dimlem3 41104 |
| Copyright terms: Public domain | W3C validator |