![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltletr | Structured version Visualization version GIF version |
Description: Transitive law for chained "less than" and "less than or equal to". (psssstr 4105 analog.) (Contributed by NM, 2-Dec-2011.) |
Ref | Expression |
---|---|
pltletr.b | β’ π΅ = (BaseβπΎ) |
pltletr.l | β’ β€ = (leβπΎ) |
pltletr.s | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
pltletr | β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π < π β§ π β€ π) β π < π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltletr.b | . . . . . 6 β’ π΅ = (BaseβπΎ) | |
2 | pltletr.l | . . . . . 6 β’ β€ = (leβπΎ) | |
3 | pltletr.s | . . . . . 6 β’ < = (ltβπΎ) | |
4 | 1, 2, 3 | pleval2 18294 | . . . . 5 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π β€ π β (π < π β¨ π = π))) |
5 | 4 | 3adant3r1 1180 | . . . 4 β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β€ π β (π < π β¨ π = π))) |
6 | 5 | adantr 479 | . . 3 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ π < π) β (π β€ π β (π < π β¨ π = π))) |
7 | 1, 3 | plttr 18299 | . . . . 5 β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π < π β§ π < π) β π < π)) |
8 | 7 | expdimp 451 | . . . 4 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ π < π) β (π < π β π < π)) |
9 | breq2 5151 | . . . . . 6 β’ (π = π β (π < π β π < π)) | |
10 | 9 | biimpcd 248 | . . . . 5 β’ (π < π β (π = π β π < π)) |
11 | 10 | adantl 480 | . . . 4 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ π < π) β (π = π β π < π)) |
12 | 8, 11 | jaod 855 | . . 3 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ π < π) β ((π < π β¨ π = π) β π < π)) |
13 | 6, 12 | sylbid 239 | . 2 β’ (((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β§ π < π) β (π β€ π β π < π)) |
14 | 13 | expimpd 452 | 1 β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π < π β§ π β€ π) β π < π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β¨ wo 843 β§ w3a 1085 = wceq 1539 β wcel 2104 class class class wbr 5147 βcfv 6542 Basecbs 17148 lecple 17208 Posetcpo 18264 ltcplt 18265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-proset 18252 df-poset 18270 df-plt 18287 |
This theorem is referenced by: cvrletrN 38446 atlen0 38483 atlelt 38612 2atlt 38613 ps-2 38652 llnnleat 38687 lplnnle2at 38715 lvolnle3at 38756 dalemcea 38834 2atm2atN 38959 dia2dimlem2 40239 dia2dimlem3 40240 |
Copyright terms: Public domain | W3C validator |