MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltletr Structured version   Visualization version   GIF version

Theorem pltletr 18309
Description: Transitive law for chained "less than" and "less than or equal to". (psssstr 4075 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltletr.b 𝐵 = (Base‘𝐾)
pltletr.l = (le‘𝐾)
pltletr.s < = (lt‘𝐾)
Assertion
Ref Expression
pltletr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 𝑍) → 𝑋 < 𝑍))

Proof of Theorem pltletr
StepHypRef Expression
1 pltletr.b . . . . . 6 𝐵 = (Base‘𝐾)
2 pltletr.l . . . . . 6 = (le‘𝐾)
3 pltletr.s . . . . . 6 < = (lt‘𝐾)
41, 2, 3pleval2 18303 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍 ↔ (𝑌 < 𝑍𝑌 = 𝑍)))
543adant3r1 1183 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍 ↔ (𝑌 < 𝑍𝑌 = 𝑍)))
65adantr 480 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 𝑍 ↔ (𝑌 < 𝑍𝑌 = 𝑍)))
71, 3plttr 18308 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
87expdimp 452 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 < 𝑍𝑋 < 𝑍))
9 breq2 5114 . . . . . 6 (𝑌 = 𝑍 → (𝑋 < 𝑌𝑋 < 𝑍))
109biimpcd 249 . . . . 5 (𝑋 < 𝑌 → (𝑌 = 𝑍𝑋 < 𝑍))
1110adantl 481 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 = 𝑍𝑋 < 𝑍))
128, 11jaod 859 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → ((𝑌 < 𝑍𝑌 = 𝑍) → 𝑋 < 𝑍))
136, 12sylbid 240 . 2 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 𝑍𝑋 < 𝑍))
1413expimpd 453 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  Posetcpo 18275  ltcplt 18276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-proset 18262  df-poset 18281  df-plt 18296
This theorem is referenced by:  cvrletrN  39273  atlen0  39310  atlelt  39439  2atlt  39440  ps-2  39479  llnnleat  39514  lplnnle2at  39542  lvolnle3at  39583  dalemcea  39661  2atm2atN  39786  dia2dimlem2  41066  dia2dimlem3  41067
  Copyright terms: Public domain W3C validator