| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltletr | Structured version Visualization version GIF version | ||
| Description: Transitive law for chained "less than" and "less than or equal to". (psssstr 4072 analog.) (Contributed by NM, 2-Dec-2011.) |
| Ref | Expression |
|---|---|
| pltletr.b | ⊢ 𝐵 = (Base‘𝐾) |
| pltletr.l | ⊢ ≤ = (le‘𝐾) |
| pltletr.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltletr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltletr.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | pltletr.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 3 | pltletr.s | . . . . . 6 ⊢ < = (lt‘𝐾) | |
| 4 | 1, 2, 3 | pleval2 18296 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ≤ 𝑍 ↔ (𝑌 < 𝑍 ∨ 𝑌 = 𝑍))) |
| 5 | 4 | 3adant3r1 1183 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ≤ 𝑍 ↔ (𝑌 < 𝑍 ∨ 𝑌 = 𝑍))) |
| 6 | 5 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 ≤ 𝑍 ↔ (𝑌 < 𝑍 ∨ 𝑌 = 𝑍))) |
| 7 | 1, 3 | plttr 18301 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
| 8 | 7 | expdimp 452 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 < 𝑍 → 𝑋 < 𝑍)) |
| 9 | breq2 5111 | . . . . . 6 ⊢ (𝑌 = 𝑍 → (𝑋 < 𝑌 ↔ 𝑋 < 𝑍)) | |
| 10 | 9 | biimpcd 249 | . . . . 5 ⊢ (𝑋 < 𝑌 → (𝑌 = 𝑍 → 𝑋 < 𝑍)) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 = 𝑍 → 𝑋 < 𝑍)) |
| 12 | 8, 11 | jaod 859 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → ((𝑌 < 𝑍 ∨ 𝑌 = 𝑍) → 𝑋 < 𝑍)) |
| 13 | 6, 12 | sylbid 240 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 ≤ 𝑍 → 𝑋 < 𝑍)) |
| 14 | 13 | expimpd 453 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Posetcpo 18268 ltcplt 18269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-proset 18255 df-poset 18274 df-plt 18289 |
| This theorem is referenced by: cvrletrN 39266 atlen0 39303 atlelt 39432 2atlt 39433 ps-2 39472 llnnleat 39507 lplnnle2at 39535 lvolnle3at 39576 dalemcea 39654 2atm2atN 39779 dia2dimlem2 41059 dia2dimlem3 41060 |
| Copyright terms: Public domain | W3C validator |