![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltletr | Structured version Visualization version GIF version |
Description: Transitive law for chained "less than" and "less than or equal to". (psssstr 4119 analog.) (Contributed by NM, 2-Dec-2011.) |
Ref | Expression |
---|---|
pltletr.b | ⊢ 𝐵 = (Base‘𝐾) |
pltletr.l | ⊢ ≤ = (le‘𝐾) |
pltletr.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltletr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltletr.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pltletr.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | pltletr.s | . . . . . 6 ⊢ < = (lt‘𝐾) | |
4 | 1, 2, 3 | pleval2 18395 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ≤ 𝑍 ↔ (𝑌 < 𝑍 ∨ 𝑌 = 𝑍))) |
5 | 4 | 3adant3r1 1181 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ≤ 𝑍 ↔ (𝑌 < 𝑍 ∨ 𝑌 = 𝑍))) |
6 | 5 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 ≤ 𝑍 ↔ (𝑌 < 𝑍 ∨ 𝑌 = 𝑍))) |
7 | 1, 3 | plttr 18400 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
8 | 7 | expdimp 452 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 < 𝑍 → 𝑋 < 𝑍)) |
9 | breq2 5152 | . . . . . 6 ⊢ (𝑌 = 𝑍 → (𝑋 < 𝑌 ↔ 𝑋 < 𝑍)) | |
10 | 9 | biimpcd 249 | . . . . 5 ⊢ (𝑋 < 𝑌 → (𝑌 = 𝑍 → 𝑋 < 𝑍)) |
11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 = 𝑍 → 𝑋 < 𝑍)) |
12 | 8, 11 | jaod 859 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → ((𝑌 < 𝑍 ∨ 𝑌 = 𝑍) → 𝑋 < 𝑍)) |
13 | 6, 12 | sylbid 240 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 ≤ 𝑍 → 𝑋 < 𝑍)) |
14 | 13 | expimpd 453 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 Posetcpo 18365 ltcplt 18366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-proset 18352 df-poset 18371 df-plt 18388 |
This theorem is referenced by: cvrletrN 39255 atlen0 39292 atlelt 39421 2atlt 39422 ps-2 39461 llnnleat 39496 lplnnle2at 39524 lvolnle3at 39565 dalemcea 39643 2atm2atN 39768 dia2dimlem2 41048 dia2dimlem3 41049 |
Copyright terms: Public domain | W3C validator |