Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltletr Structured version   Visualization version   GIF version

Theorem pltletr 17579
 Description: Transitive law for chained "less than" and "less than or equal to". (psssstr 4069 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltletr.b 𝐵 = (Base‘𝐾)
pltletr.l = (le‘𝐾)
pltletr.s < = (lt‘𝐾)
Assertion
Ref Expression
pltletr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 𝑍) → 𝑋 < 𝑍))

Proof of Theorem pltletr
StepHypRef Expression
1 pltletr.b . . . . . 6 𝐵 = (Base‘𝐾)
2 pltletr.l . . . . . 6 = (le‘𝐾)
3 pltletr.s . . . . . 6 < = (lt‘𝐾)
41, 2, 3pleval2 17573 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍 ↔ (𝑌 < 𝑍𝑌 = 𝑍)))
543adant3r1 1179 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍 ↔ (𝑌 < 𝑍𝑌 = 𝑍)))
65adantr 484 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 𝑍 ↔ (𝑌 < 𝑍𝑌 = 𝑍)))
71, 3plttr 17578 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
87expdimp 456 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 < 𝑍𝑋 < 𝑍))
9 breq2 5057 . . . . . 6 (𝑌 = 𝑍 → (𝑋 < 𝑌𝑋 < 𝑍))
109biimpcd 252 . . . . 5 (𝑋 < 𝑌 → (𝑌 = 𝑍𝑋 < 𝑍))
1110adantl 485 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 = 𝑍𝑋 < 𝑍))
128, 11jaod 856 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → ((𝑌 < 𝑍𝑌 = 𝑍) → 𝑋 < 𝑍))
136, 12sylbid 243 . 2 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑌 𝑍𝑋 < 𝑍))
1413expimpd 457 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 𝑍) → 𝑋 < 𝑍))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   class class class wbr 5053  ‘cfv 6344  Basecbs 16481  lecple 16570  Posetcpo 17548  ltcplt 17549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-iota 6303  df-fun 6346  df-fv 6352  df-proset 17536  df-poset 17554  df-plt 17566 This theorem is referenced by:  cvrletrN  36481  atlen0  36518  atlelt  36646  2atlt  36647  ps-2  36686  llnnleat  36721  lplnnle2at  36749  lvolnle3at  36790  dalemcea  36868  2atm2atN  36993  dia2dimlem2  38273  dia2dimlem3  38274
 Copyright terms: Public domain W3C validator