Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnle Structured version   Visualization version   GIF version

Theorem cvrnle 38150
Description: The covers relation implies the negation of the converse "less than or equal to" relation. (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
cvrle.b 𝐡 = (Baseβ€˜πΎ)
cvrle.l ≀ = (leβ€˜πΎ)
cvrle.c 𝐢 = ( β‹– β€˜πΎ)
Assertion
Ref Expression
cvrnle (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ Β¬ π‘Œ ≀ 𝑋)

Proof of Theorem cvrnle
StepHypRef Expression
1 cvrle.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 eqid 2733 . . 3 (ltβ€˜πΎ) = (ltβ€˜πΎ)
3 cvrle.c . . 3 𝐢 = ( β‹– β€˜πΎ)
41, 2, 3cvrlt 38140 . 2 (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ 𝑋(ltβ€˜πΎ)π‘Œ)
5 cvrle.l . . 3 ≀ = (leβ€˜πΎ)
61, 5, 2pltnle 18291 . 2 (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋(ltβ€˜πΎ)π‘Œ) β†’ Β¬ π‘Œ ≀ 𝑋)
74, 6syldan 592 1 (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ Β¬ π‘Œ ≀ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5149  β€˜cfv 6544  Basecbs 17144  lecple 17204  Posetcpo 18260  ltcplt 18261   β‹– ccvr 38132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-proset 18248  df-poset 18266  df-plt 18283  df-covers 38136
This theorem is referenced by:  atnle0  38179  dih1  40157
  Copyright terms: Public domain W3C validator