MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsgsum Structured version   Visualization version   GIF version

Theorem prdsgsum 20000
Description: Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
prdsgsum.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsgsum.b 𝐵 = (Base‘𝑅)
prdsgsum.z 0 = (0g𝑌)
prdsgsum.i (𝜑𝐼𝑉)
prdsgsum.j (𝜑𝐽𝑊)
prdsgsum.s (𝜑𝑆𝑋)
prdsgsum.r ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
prdsgsum.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
prdsgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
prdsgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐼   𝑥,𝐽,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem prdsgsum
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prdsgsum.y . . . 4 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 eqid 2736 . . . 4 (Base‘𝑌) = (Base‘𝑌)
3 prdsgsum.s . . . 4 (𝜑𝑆𝑋)
4 prdsgsum.i . . . 4 (𝜑𝐼𝑉)
5 prdsgsum.r . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
65fmpttd 7134 . . . . 5 (𝜑 → (𝑥𝐼𝑅):𝐼⟶CMnd)
76ffnd 6736 . . . 4 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
8 prdsgsum.z . . . . 5 0 = (0g𝑌)
91, 4, 3, 6prdscmnd 19880 . . . . 5 (𝜑𝑌 ∈ CMnd)
10 prdsgsum.j . . . . 5 (𝜑𝐽𝑊)
11 prdsgsum.f . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
1211anassrs 467 . . . . . . . . 9 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈𝐵)
1312an32s 652 . . . . . . . 8 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈𝐵)
1413ralrimiva 3145 . . . . . . 7 ((𝜑𝑦𝐽) → ∀𝑥𝐼 𝑈𝐵)
155ralrimiva 3145 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 𝑅 ∈ CMnd)
16 prdsgsum.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
171, 2, 3, 4, 15, 16prdsbasmpt2 17528 . . . . . . . 8 (𝜑 → ((𝑥𝐼𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥𝐼 𝑈𝐵))
1817adantr 480 . . . . . . 7 ((𝜑𝑦𝐽) → ((𝑥𝐼𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥𝐼 𝑈𝐵))
1914, 18mpbird 257 . . . . . 6 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
2019fmpttd 7134 . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽⟶(Base‘𝑌))
21 prdsgsum.w . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
222, 8, 9, 10, 20, 21gsumcl 19934 . . . 4 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) ∈ (Base‘𝑌))
231, 2, 3, 4, 7, 22prdsbasfn 17517 . . 3 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼)
24 nfcv 2904 . . . . 5 𝑥𝑌
25 nfcv 2904 . . . . 5 𝑥 Σg
26 nfcv 2904 . . . . . 6 𝑥𝐽
27 nfmpt1 5249 . . . . . 6 𝑥(𝑥𝐼𝑈)
2826, 27nfmpt 5248 . . . . 5 𝑥(𝑦𝐽 ↦ (𝑥𝐼𝑈))
2924, 25, 28nfov 7462 . . . 4 𝑥(𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))
3029dffn5f 6979 . . 3 ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼 ↔ (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
3123, 30sylib 218 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
32 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
33 eqid 2736 . . . . . . . 8 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
3433fvmpt2 7026 . . . . . . 7 ((𝑥𝐼𝑈𝐵) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3532, 12, 34syl2an2r 685 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3635mpteq2dva 5241 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥)) = (𝑦𝐽𝑈))
3736oveq2d 7448 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = (𝑅 Σg (𝑦𝐽𝑈)))
389adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑌 ∈ CMnd)
39 cmnmnd 19816 . . . . . 6 (𝑅 ∈ CMnd → 𝑅 ∈ Mnd)
405, 39syl 17 . . . . 5 ((𝜑𝑥𝐼) → 𝑅 ∈ Mnd)
4110adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
424adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑉)
433adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑋)
4440fmpttd 7134 . . . . . . . 8 (𝜑 → (𝑥𝐼𝑅):𝐼⟶Mnd)
4544adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑥𝐼𝑅):𝐼⟶Mnd)
461, 2, 42, 43, 45, 32prdspjmhm 18843 . . . . . 6 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑌 MndHom ((𝑥𝐼𝑅)‘𝑥)))
47 eqid 2736 . . . . . . . . 9 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
4847fvmpt2 7026 . . . . . . . 8 ((𝑥𝐼𝑅 ∈ CMnd) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
4932, 5, 48syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
5049oveq2d 7448 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌 MndHom ((𝑥𝐼𝑅)‘𝑥)) = (𝑌 MndHom 𝑅))
5146, 50eleqtrd 2842 . . . . 5 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑌 MndHom 𝑅))
5219adantlr 715 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
5321adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
54 fveq1 6904 . . . . 5 (𝑎 = (𝑥𝐼𝑈) → (𝑎𝑥) = ((𝑥𝐼𝑈)‘𝑥))
55 fveq1 6904 . . . . 5 (𝑎 = (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) → (𝑎𝑥) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
562, 8, 38, 40, 41, 51, 52, 53, 54, 55gsummhm2 19958 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5737, 56eqtr3d 2778 . . 3 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽𝑈)) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5857mpteq2dva 5241 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
5931, 58eqtr4d 2779 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060   class class class wbr 5142  cmpt 5224   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432   finSupp cfsupp 9402  Basecbs 17248  0gc0g 17485   Σg cgsu 17486  Xscprds 17491  Mndcmnd 18748   MndHom cmhm 18795  CMndccmn 19799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-cntz 19336  df-cmn 19801
This theorem is referenced by:  pwsgsum  20001
  Copyright terms: Public domain W3C validator