MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsgsum Structured version   Visualization version   GIF version

Theorem prdsgsum 19967
Description: Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
prdsgsum.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsgsum.b 𝐵 = (Base‘𝑅)
prdsgsum.z 0 = (0g𝑌)
prdsgsum.i (𝜑𝐼𝑉)
prdsgsum.j (𝜑𝐽𝑊)
prdsgsum.s (𝜑𝑆𝑋)
prdsgsum.r ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
prdsgsum.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
prdsgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
prdsgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐼   𝑥,𝐽,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem prdsgsum
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prdsgsum.y . . . 4 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 eqid 2736 . . . 4 (Base‘𝑌) = (Base‘𝑌)
3 prdsgsum.s . . . 4 (𝜑𝑆𝑋)
4 prdsgsum.i . . . 4 (𝜑𝐼𝑉)
5 prdsgsum.r . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
65fmpttd 7110 . . . . 5 (𝜑 → (𝑥𝐼𝑅):𝐼⟶CMnd)
76ffnd 6712 . . . 4 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
8 prdsgsum.z . . . . 5 0 = (0g𝑌)
91, 4, 3, 6prdscmnd 19847 . . . . 5 (𝜑𝑌 ∈ CMnd)
10 prdsgsum.j . . . . 5 (𝜑𝐽𝑊)
11 prdsgsum.f . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
1211anassrs 467 . . . . . . . . 9 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈𝐵)
1312an32s 652 . . . . . . . 8 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈𝐵)
1413ralrimiva 3133 . . . . . . 7 ((𝜑𝑦𝐽) → ∀𝑥𝐼 𝑈𝐵)
155ralrimiva 3133 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 𝑅 ∈ CMnd)
16 prdsgsum.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
171, 2, 3, 4, 15, 16prdsbasmpt2 17501 . . . . . . . 8 (𝜑 → ((𝑥𝐼𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥𝐼 𝑈𝐵))
1817adantr 480 . . . . . . 7 ((𝜑𝑦𝐽) → ((𝑥𝐼𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥𝐼 𝑈𝐵))
1914, 18mpbird 257 . . . . . 6 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
2019fmpttd 7110 . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽⟶(Base‘𝑌))
21 prdsgsum.w . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
222, 8, 9, 10, 20, 21gsumcl 19901 . . . 4 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) ∈ (Base‘𝑌))
231, 2, 3, 4, 7, 22prdsbasfn 17490 . . 3 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼)
24 nfcv 2899 . . . . 5 𝑥𝑌
25 nfcv 2899 . . . . 5 𝑥 Σg
26 nfcv 2899 . . . . . 6 𝑥𝐽
27 nfmpt1 5225 . . . . . 6 𝑥(𝑥𝐼𝑈)
2826, 27nfmpt 5224 . . . . 5 𝑥(𝑦𝐽 ↦ (𝑥𝐼𝑈))
2924, 25, 28nfov 7440 . . . 4 𝑥(𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))
3029dffn5f 6955 . . 3 ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼 ↔ (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
3123, 30sylib 218 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
32 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
33 eqid 2736 . . . . . . . 8 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
3433fvmpt2 7002 . . . . . . 7 ((𝑥𝐼𝑈𝐵) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3532, 12, 34syl2an2r 685 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3635mpteq2dva 5219 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥)) = (𝑦𝐽𝑈))
3736oveq2d 7426 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = (𝑅 Σg (𝑦𝐽𝑈)))
389adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑌 ∈ CMnd)
39 cmnmnd 19783 . . . . . 6 (𝑅 ∈ CMnd → 𝑅 ∈ Mnd)
405, 39syl 17 . . . . 5 ((𝜑𝑥𝐼) → 𝑅 ∈ Mnd)
4110adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
424adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑉)
433adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑋)
4440fmpttd 7110 . . . . . . . 8 (𝜑 → (𝑥𝐼𝑅):𝐼⟶Mnd)
4544adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑥𝐼𝑅):𝐼⟶Mnd)
461, 2, 42, 43, 45, 32prdspjmhm 18812 . . . . . 6 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑌 MndHom ((𝑥𝐼𝑅)‘𝑥)))
47 eqid 2736 . . . . . . . . 9 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
4847fvmpt2 7002 . . . . . . . 8 ((𝑥𝐼𝑅 ∈ CMnd) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
4932, 5, 48syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
5049oveq2d 7426 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌 MndHom ((𝑥𝐼𝑅)‘𝑥)) = (𝑌 MndHom 𝑅))
5146, 50eleqtrd 2837 . . . . 5 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑌 MndHom 𝑅))
5219adantlr 715 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
5321adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
54 fveq1 6880 . . . . 5 (𝑎 = (𝑥𝐼𝑈) → (𝑎𝑥) = ((𝑥𝐼𝑈)‘𝑥))
55 fveq1 6880 . . . . 5 (𝑎 = (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) → (𝑎𝑥) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
562, 8, 38, 40, 41, 51, 52, 53, 54, 55gsummhm2 19925 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5737, 56eqtr3d 2773 . . 3 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽𝑈)) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5857mpteq2dva 5219 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
5931, 58eqtr4d 2774 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  cmpt 5206   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410   finSupp cfsupp 9378  Basecbs 17233  0gc0g 17458   Σg cgsu 17459  Xscprds 17464  Mndcmnd 18717   MndHom cmhm 18764  CMndccmn 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-cntz 19305  df-cmn 19768
This theorem is referenced by:  pwsgsum  19968
  Copyright terms: Public domain W3C validator