MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsgsum Structured version   Visualization version   GIF version

Theorem prdsgsum 20023
Description: Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
prdsgsum.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsgsum.b 𝐵 = (Base‘𝑅)
prdsgsum.z 0 = (0g𝑌)
prdsgsum.i (𝜑𝐼𝑉)
prdsgsum.j (𝜑𝐽𝑊)
prdsgsum.s (𝜑𝑆𝑋)
prdsgsum.r ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
prdsgsum.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
prdsgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
prdsgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐼   𝑥,𝐽,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem prdsgsum
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prdsgsum.y . . . 4 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 eqid 2740 . . . 4 (Base‘𝑌) = (Base‘𝑌)
3 prdsgsum.s . . . 4 (𝜑𝑆𝑋)
4 prdsgsum.i . . . 4 (𝜑𝐼𝑉)
5 prdsgsum.r . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
65fmpttd 7149 . . . . 5 (𝜑 → (𝑥𝐼𝑅):𝐼⟶CMnd)
76ffnd 6748 . . . 4 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
8 prdsgsum.z . . . . 5 0 = (0g𝑌)
91, 4, 3, 6prdscmnd 19903 . . . . 5 (𝜑𝑌 ∈ CMnd)
10 prdsgsum.j . . . . 5 (𝜑𝐽𝑊)
11 prdsgsum.f . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
1211anassrs 467 . . . . . . . . 9 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈𝐵)
1312an32s 651 . . . . . . . 8 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈𝐵)
1413ralrimiva 3152 . . . . . . 7 ((𝜑𝑦𝐽) → ∀𝑥𝐼 𝑈𝐵)
155ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 𝑅 ∈ CMnd)
16 prdsgsum.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
171, 2, 3, 4, 15, 16prdsbasmpt2 17542 . . . . . . . 8 (𝜑 → ((𝑥𝐼𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥𝐼 𝑈𝐵))
1817adantr 480 . . . . . . 7 ((𝜑𝑦𝐽) → ((𝑥𝐼𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥𝐼 𝑈𝐵))
1914, 18mpbird 257 . . . . . 6 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
2019fmpttd 7149 . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽⟶(Base‘𝑌))
21 prdsgsum.w . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
222, 8, 9, 10, 20, 21gsumcl 19957 . . . 4 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) ∈ (Base‘𝑌))
231, 2, 3, 4, 7, 22prdsbasfn 17531 . . 3 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼)
24 nfcv 2908 . . . . 5 𝑥𝑌
25 nfcv 2908 . . . . 5 𝑥 Σg
26 nfcv 2908 . . . . . 6 𝑥𝐽
27 nfmpt1 5274 . . . . . 6 𝑥(𝑥𝐼𝑈)
2826, 27nfmpt 5273 . . . . 5 𝑥(𝑦𝐽 ↦ (𝑥𝐼𝑈))
2924, 25, 28nfov 7478 . . . 4 𝑥(𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))
3029dffn5f 6993 . . 3 ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼 ↔ (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
3123, 30sylib 218 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
32 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
33 eqid 2740 . . . . . . . 8 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
3433fvmpt2 7040 . . . . . . 7 ((𝑥𝐼𝑈𝐵) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3532, 12, 34syl2an2r 684 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3635mpteq2dva 5266 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥)) = (𝑦𝐽𝑈))
3736oveq2d 7464 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = (𝑅 Σg (𝑦𝐽𝑈)))
389adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑌 ∈ CMnd)
39 cmnmnd 19839 . . . . . 6 (𝑅 ∈ CMnd → 𝑅 ∈ Mnd)
405, 39syl 17 . . . . 5 ((𝜑𝑥𝐼) → 𝑅 ∈ Mnd)
4110adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
424adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑉)
433adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑋)
4440fmpttd 7149 . . . . . . . 8 (𝜑 → (𝑥𝐼𝑅):𝐼⟶Mnd)
4544adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑥𝐼𝑅):𝐼⟶Mnd)
461, 2, 42, 43, 45, 32prdspjmhm 18864 . . . . . 6 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑌 MndHom ((𝑥𝐼𝑅)‘𝑥)))
47 eqid 2740 . . . . . . . . 9 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
4847fvmpt2 7040 . . . . . . . 8 ((𝑥𝐼𝑅 ∈ CMnd) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
4932, 5, 48syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
5049oveq2d 7464 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌 MndHom ((𝑥𝐼𝑅)‘𝑥)) = (𝑌 MndHom 𝑅))
5146, 50eleqtrd 2846 . . . . 5 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑌 MndHom 𝑅))
5219adantlr 714 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
5321adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
54 fveq1 6919 . . . . 5 (𝑎 = (𝑥𝐼𝑈) → (𝑎𝑥) = ((𝑥𝐼𝑈)‘𝑥))
55 fveq1 6919 . . . . 5 (𝑎 = (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) → (𝑎𝑥) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
562, 8, 38, 40, 41, 51, 52, 53, 54, 55gsummhm2 19981 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5737, 56eqtr3d 2782 . . 3 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽𝑈)) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5857mpteq2dva 5266 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
5931, 58eqtr4d 2783 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cmpt 5249   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448   finSupp cfsupp 9431  Basecbs 17258  0gc0g 17499   Σg cgsu 17500  Xscprds 17505  Mndcmnd 18772   MndHom cmhm 18816  CMndccmn 19822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-cntz 19357  df-cmn 19824
This theorem is referenced by:  pwsgsum  20024
  Copyright terms: Public domain W3C validator