| Step | Hyp | Ref
| Expression |
| 1 | | prdsgsum.y |
. . . 4
⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| 2 | | eqid 2736 |
. . . 4
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 3 | | prdsgsum.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| 4 | | prdsgsum.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 5 | | prdsgsum.r |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ CMnd) |
| 6 | 5 | fmpttd 7110 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑅):𝐼⟶CMnd) |
| 7 | 6 | ffnd 6712 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
| 8 | | prdsgsum.z |
. . . . 5
⊢ 0 =
(0g‘𝑌) |
| 9 | 1, 4, 3, 6 | prdscmnd 19847 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ CMnd) |
| 10 | | prdsgsum.j |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ 𝑊) |
| 11 | | prdsgsum.f |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) |
| 12 | 11 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑈 ∈ 𝐵) |
| 13 | 12 | an32s 652 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝑈 ∈ 𝐵) |
| 14 | 13 | ralrimiva 3133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → ∀𝑥 ∈ 𝐼 𝑈 ∈ 𝐵) |
| 15 | 5 | ralrimiva 3133 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ CMnd) |
| 16 | | prdsgsum.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑅) |
| 17 | 1, 2, 3, 4, 15, 16 | prdsbasmpt2 17501 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥 ∈ 𝐼 𝑈 ∈ 𝐵)) |
| 18 | 17 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → ((𝑥 ∈ 𝐼 ↦ 𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥 ∈ 𝐼 𝑈 ∈ 𝐵)) |
| 19 | 14, 18 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈) ∈ (Base‘𝑌)) |
| 20 | 19 | fmpttd 7110 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)):𝐽⟶(Base‘𝑌)) |
| 21 | | prdsgsum.w |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) |
| 22 | 2, 8, 9, 10, 20, 21 | gsumcl 19901 |
. . . 4
⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) ∈ (Base‘𝑌)) |
| 23 | 1, 2, 3, 4, 7, 22 | prdsbasfn 17490 |
. . 3
⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) Fn 𝐼) |
| 24 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑥𝑌 |
| 25 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑥
Σg |
| 26 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑥𝐽 |
| 27 | | nfmpt1 5225 |
. . . . . 6
⊢
Ⅎ𝑥(𝑥 ∈ 𝐼 ↦ 𝑈) |
| 28 | 26, 27 | nfmpt 5224 |
. . . . 5
⊢
Ⅎ𝑥(𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) |
| 29 | 24, 25, 28 | nfov 7440 |
. . . 4
⊢
Ⅎ𝑥(𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) |
| 30 | 29 | dffn5f 6955 |
. . 3
⊢ ((𝑌 Σg
(𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) Fn 𝐼 ↔ (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ ((𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥))) |
| 31 | 23, 30 | sylib 218 |
. 2
⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ ((𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥))) |
| 32 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
| 33 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐼 ↦ 𝑈) = (𝑥 ∈ 𝐼 ↦ 𝑈) |
| 34 | 33 | fvmpt2 7002 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐼 ∧ 𝑈 ∈ 𝐵) → ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥) = 𝑈) |
| 35 | 32, 12, 34 | syl2an2r 685 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥) = 𝑈) |
| 36 | 35 | mpteq2dva 5219 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐽 ↦ ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥)) = (𝑦 ∈ 𝐽 ↦ 𝑈)) |
| 37 | 36 | oveq2d 7426 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅 Σg (𝑦 ∈ 𝐽 ↦ ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈))) |
| 38 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑌 ∈ CMnd) |
| 39 | | cmnmnd 19783 |
. . . . . 6
⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) |
| 40 | 5, 39 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ Mnd) |
| 41 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐽 ∈ 𝑊) |
| 42 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
| 43 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑋) |
| 44 | 40 | fmpttd 7110 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑅):𝐼⟶Mnd) |
| 45 | 44 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑥 ∈ 𝐼 ↦ 𝑅):𝐼⟶Mnd) |
| 46 | 1, 2, 42, 43, 45, 32 | prdspjmhm 18812 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎‘𝑥)) ∈ (𝑌 MndHom ((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))) |
| 47 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑥 ∈ 𝐼 ↦ 𝑅) |
| 48 | 47 | fvmpt2 7002 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ CMnd) → ((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥) = 𝑅) |
| 49 | 32, 5, 48 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥) = 𝑅) |
| 50 | 49 | oveq2d 7426 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑌 MndHom ((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = (𝑌 MndHom 𝑅)) |
| 51 | 46, 50 | eleqtrd 2837 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎‘𝑥)) ∈ (𝑌 MndHom 𝑅)) |
| 52 | 19 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈) ∈ (Base‘𝑌)) |
| 53 | 21 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) |
| 54 | | fveq1 6880 |
. . . . 5
⊢ (𝑎 = (𝑥 ∈ 𝐼 ↦ 𝑈) → (𝑎‘𝑥) = ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥)) |
| 55 | | fveq1 6880 |
. . . . 5
⊢ (𝑎 = (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) → (𝑎‘𝑥) = ((𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥)) |
| 56 | 2, 8, 38, 40, 41, 51, 52, 53, 54, 55 | gsummhm2 19925 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅 Σg (𝑦 ∈ 𝐽 ↦ ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥))) = ((𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥)) |
| 57 | 37, 56 | eqtr3d 2773 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)) = ((𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥)) |
| 58 | 57 | mpteq2dva 5219 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ ((𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥))) |
| 59 | 31, 58 | eqtr4d 2774 |
1
⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |