MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsgsum Structured version   Visualization version   GIF version

Theorem prdsgsum 19497
Description: Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
prdsgsum.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsgsum.b 𝐵 = (Base‘𝑅)
prdsgsum.z 0 = (0g𝑌)
prdsgsum.i (𝜑𝐼𝑉)
prdsgsum.j (𝜑𝐽𝑊)
prdsgsum.s (𝜑𝑆𝑋)
prdsgsum.r ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
prdsgsum.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
prdsgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
prdsgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐼   𝑥,𝐽,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem prdsgsum
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prdsgsum.y . . . 4 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 eqid 2738 . . . 4 (Base‘𝑌) = (Base‘𝑌)
3 prdsgsum.s . . . 4 (𝜑𝑆𝑋)
4 prdsgsum.i . . . 4 (𝜑𝐼𝑉)
5 prdsgsum.r . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
65fmpttd 6971 . . . . 5 (𝜑 → (𝑥𝐼𝑅):𝐼⟶CMnd)
76ffnd 6585 . . . 4 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
8 prdsgsum.z . . . . 5 0 = (0g𝑌)
91, 4, 3, 6prdscmnd 19377 . . . . 5 (𝜑𝑌 ∈ CMnd)
10 prdsgsum.j . . . . 5 (𝜑𝐽𝑊)
11 prdsgsum.f . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
1211anassrs 467 . . . . . . . . 9 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈𝐵)
1312an32s 648 . . . . . . . 8 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈𝐵)
1413ralrimiva 3107 . . . . . . 7 ((𝜑𝑦𝐽) → ∀𝑥𝐼 𝑈𝐵)
155ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 𝑅 ∈ CMnd)
16 prdsgsum.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
171, 2, 3, 4, 15, 16prdsbasmpt2 17110 . . . . . . . 8 (𝜑 → ((𝑥𝐼𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥𝐼 𝑈𝐵))
1817adantr 480 . . . . . . 7 ((𝜑𝑦𝐽) → ((𝑥𝐼𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥𝐼 𝑈𝐵))
1914, 18mpbird 256 . . . . . 6 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
2019fmpttd 6971 . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽⟶(Base‘𝑌))
21 prdsgsum.w . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
222, 8, 9, 10, 20, 21gsumcl 19431 . . . 4 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) ∈ (Base‘𝑌))
231, 2, 3, 4, 7, 22prdsbasfn 17099 . . 3 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼)
24 nfcv 2906 . . . . 5 𝑥𝑌
25 nfcv 2906 . . . . 5 𝑥 Σg
26 nfcv 2906 . . . . . 6 𝑥𝐽
27 nfmpt1 5178 . . . . . 6 𝑥(𝑥𝐼𝑈)
2826, 27nfmpt 5177 . . . . 5 𝑥(𝑦𝐽 ↦ (𝑥𝐼𝑈))
2924, 25, 28nfov 7285 . . . 4 𝑥(𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))
3029dffn5f 6822 . . 3 ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼 ↔ (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
3123, 30sylib 217 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
32 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
33 eqid 2738 . . . . . . . 8 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
3433fvmpt2 6868 . . . . . . 7 ((𝑥𝐼𝑈𝐵) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3532, 12, 34syl2an2r 681 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3635mpteq2dva 5170 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥)) = (𝑦𝐽𝑈))
3736oveq2d 7271 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = (𝑅 Σg (𝑦𝐽𝑈)))
389adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑌 ∈ CMnd)
39 cmnmnd 19317 . . . . . 6 (𝑅 ∈ CMnd → 𝑅 ∈ Mnd)
405, 39syl 17 . . . . 5 ((𝜑𝑥𝐼) → 𝑅 ∈ Mnd)
4110adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
424adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑉)
433adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑋)
4440fmpttd 6971 . . . . . . . 8 (𝜑 → (𝑥𝐼𝑅):𝐼⟶Mnd)
4544adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑥𝐼𝑅):𝐼⟶Mnd)
461, 2, 42, 43, 45, 32prdspjmhm 18382 . . . . . 6 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑌 MndHom ((𝑥𝐼𝑅)‘𝑥)))
47 eqid 2738 . . . . . . . . 9 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
4847fvmpt2 6868 . . . . . . . 8 ((𝑥𝐼𝑅 ∈ CMnd) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
4932, 5, 48syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
5049oveq2d 7271 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌 MndHom ((𝑥𝐼𝑅)‘𝑥)) = (𝑌 MndHom 𝑅))
5146, 50eleqtrd 2841 . . . . 5 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑌 MndHom 𝑅))
5219adantlr 711 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
5321adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
54 fveq1 6755 . . . . 5 (𝑎 = (𝑥𝐼𝑈) → (𝑎𝑥) = ((𝑥𝐼𝑈)‘𝑥))
55 fveq1 6755 . . . . 5 (𝑎 = (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) → (𝑎𝑥) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
562, 8, 38, 40, 41, 51, 52, 53, 54, 55gsummhm2 19455 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5737, 56eqtr3d 2780 . . 3 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽𝑈)) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5857mpteq2dva 5170 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
5931, 58eqtr4d 2781 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cmpt 5153   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255   finSupp cfsupp 9058  Basecbs 16840  0gc0g 17067   Σg cgsu 17068  Xscprds 17073  Mndcmnd 18300   MndHom cmhm 18343  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-cntz 18838  df-cmn 19303
This theorem is referenced by:  pwsgsum  19498
  Copyright terms: Public domain W3C validator