MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfexALT Structured version   Visualization version   GIF version

Theorem dmfexALT 7897
Description: Alternate proof of dmfex 7894: shorter but using ax-rep 5284. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 23-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dmfexALT ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)

Proof of Theorem dmfexALT
StepHypRef Expression
1 elex 3492 . 2 (𝐹𝐶𝐹 ∈ V)
2 fdmexb 7896 . . 3 (𝐹:𝐴𝐵 → (𝐴 ∈ V ↔ 𝐹 ∈ V))
32biimprd 247 . 2 (𝐹:𝐴𝐵 → (𝐹 ∈ V → 𝐴 ∈ V))
41, 3mpan9 507 1 ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3474  wf 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator