![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icossico2 | Structured version Visualization version GIF version |
Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
icossico2.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
icossico2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
icossico2.3 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
icossico2 | ⊢ (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icossico2.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
2 | icossico2.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
3 | icossico2.3 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
4 | 2 | xrleidd 13072 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐶) |
5 | icossico 13335 | . 2 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐶)) → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3911 class class class wbr 5106 (class class class)co 7358 ℝ*cxr 11189 ≤ cle 11191 [,)cico 13267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-pre-lttri 11126 ax-pre-lttrn 11127 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-ico 13271 |
This theorem is referenced by: liminflelimsuplem 44023 |
Copyright terms: Public domain | W3C validator |