Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > icossico2 | Structured version Visualization version GIF version |
Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
icossico2.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
icossico2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
icossico2.3 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
icossico2 | ⊢ (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icossico2.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
2 | icossico2.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
3 | icossico2.3 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
4 | 2 | xrleidd 12591 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐶) |
5 | icossico 12854 | . 2 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐶)) → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 837 | 1 ⊢ (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3860 class class class wbr 5035 (class class class)co 7155 ℝ*cxr 10717 ≤ cle 10719 [,)cico 12786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-pre-lttri 10654 ax-pre-lttrn 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-ico 12790 |
This theorem is referenced by: liminflelimsuplem 42811 |
Copyright terms: Public domain | W3C validator |