![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icossico2 | Structured version Visualization version GIF version |
Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
icossico2.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
icossico2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
icossico2.3 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
icossico2 | ⊢ (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icossico2.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
2 | icossico2.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
3 | icossico2.3 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
4 | 2 | xrleidd 13130 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐶) |
5 | icossico 13393 | . 2 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐶)) → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 837 | 1 ⊢ (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3948 class class class wbr 5148 (class class class)co 7408 ℝ*cxr 11246 ≤ cle 11248 [,)cico 13325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-ico 13329 |
This theorem is referenced by: liminflelimsuplem 44481 |
Copyright terms: Public domain | W3C validator |