Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmxrncnvepres Structured version   Visualization version   GIF version

Theorem dmxrncnvepres 38381
Description: Domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
dmxrncnvepres dom (𝑅 ⋉ ( E ↾ 𝐴)) = (dom (𝑅𝐴) ∖ {∅})

Proof of Theorem dmxrncnvepres
StepHypRef Expression
1 xrnres 38374 . . . 4 ((𝑅 E ) ↾ 𝐴) = ((𝑅𝐴) ⋉ E )
2 xrnres2 38375 . . . 4 ((𝑅 E ) ↾ 𝐴) = (𝑅 ⋉ ( E ↾ 𝐴))
31, 2eqtr3i 2754 . . 3 ((𝑅𝐴) ⋉ E ) = (𝑅 ⋉ ( E ↾ 𝐴))
43dmeqi 5847 . 2 dom ((𝑅𝐴) ⋉ E ) = dom (𝑅 ⋉ ( E ↾ 𝐴))
5 dmxrncnvep 38348 . 2 dom ((𝑅𝐴) ⋉ E ) = (dom (𝑅𝐴) ∖ {∅})
64, 5eqtr3i 2754 1 dom (𝑅 ⋉ ( E ↾ 𝐴)) = (dom (𝑅𝐴) ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3900  c0 4284  {csn 4577   E cep 5518  ccnv 5618  dom cdm 5619  cres 5621  cxrn 38154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-oprab 7353  df-1st 7924  df-2nd 7925  df-xrn 38339
This theorem is referenced by:  eldmxrncnvepres  38382  eldmxrncnvepres2  38383
  Copyright terms: Public domain W3C validator