MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom0OLD Structured version   Visualization version   GIF version

Theorem dom0OLD 9169
Description: Obsolete version of dom0 9168 as of 29-Nov-2024. (Contributed by NM, 22-Nov-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dom0OLD (𝐴 ≼ ∅ ↔ 𝐴 = ∅)

Proof of Theorem dom0OLD
StepHypRef Expression
1 reldom 9009 . . . . 5 Rel ≼
21brrelex1i 5756 . . . 4 (𝐴 ≼ ∅ → 𝐴 ∈ V)
3 0domg 9166 . . . 4 (𝐴 ∈ V → ∅ ≼ 𝐴)
42, 3syl 17 . . 3 (𝐴 ≼ ∅ → ∅ ≼ 𝐴)
54pm4.71i 559 . 2 (𝐴 ≼ ∅ ↔ (𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴))
6 sbthb 9160 . 2 ((𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴) ↔ 𝐴 ≈ ∅)
7 en0 9078 . 2 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
85, 6, 73bitri 297 1 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352   class class class wbr 5166  cen 9000  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-er 8763  df-en 9004  df-dom 9005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator