MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrcl Structured version   Visualization version   GIF version

Theorem dvdsrcl 19521
Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
Assertion
Ref Expression
dvdsrcl (𝑋 𝑌𝑋𝐵)

Proof of Theorem dvdsrcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . 3 𝐵 = (Base‘𝑅)
2 dvdsr.2 . . 3 = (∥r𝑅)
3 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
41, 2, 3dvdsr 19518 . 2 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 𝑌))
54simplbi 501 1 (𝑋 𝑌𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  wrex 3054   class class class wbr 5030  cfv 6339  (class class class)co 7170  Basecbs 16586  .rcmulr 16669  rcdsr 19510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-dvdsr 19513
This theorem is referenced by:  unitcl  19531
  Copyright terms: Public domain W3C validator