MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrcl Structured version   Visualization version   GIF version

Theorem dvdsrcl 19134
Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
Assertion
Ref Expression
dvdsrcl (𝑋 𝑌𝑋𝐵)

Proof of Theorem dvdsrcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . 3 𝐵 = (Base‘𝑅)
2 dvdsr.2 . . 3 = (∥r𝑅)
3 eqid 2772 . . 3 (.r𝑅) = (.r𝑅)
41, 2, 3dvdsr 19131 . 2 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 𝑌))
54simplbi 490 1 (𝑋 𝑌𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  wrex 3083   class class class wbr 4925  cfv 6185  (class class class)co 6974  Basecbs 16337  .rcmulr 16420  rcdsr 19123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-dvdsr 19126
This theorem is referenced by:  unitcl  19144
  Copyright terms: Public domain W3C validator