| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsrcl | Structured version Visualization version GIF version | ||
| Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
| Ref | Expression |
|---|---|
| dvdsrcl | ⊢ (𝑋 ∥ 𝑌 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | dvdsr.2 | . . 3 ⊢ ∥ = (∥r‘𝑅) | |
| 3 | eqid 2729 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | 1, 2, 3 | dvdsr 20247 | . 2 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑋) = 𝑌)) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑋 ∥ 𝑌 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 .rcmulr 17162 ∥rcdsr 20239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-dvdsr 20242 |
| This theorem is referenced by: unitcl 20260 rprmasso 33462 |
| Copyright terms: Public domain | W3C validator |