MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrcl Structured version   Visualization version   GIF version

Theorem dvdsrcl 20330
Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
Assertion
Ref Expression
dvdsrcl (𝑋 𝑌𝑋𝐵)

Proof of Theorem dvdsrcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . 3 𝐵 = (Base‘𝑅)
2 dvdsr.2 . . 3 = (∥r𝑅)
3 eqid 2736 . . 3 (.r𝑅) = (.r𝑅)
41, 2, 3dvdsr 20327 . 2 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 𝑌))
54simplbi 497 1 (𝑋 𝑌𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  rcdsr 20319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-dvdsr 20322
This theorem is referenced by:  unitcl  20340  rprmasso  33545
  Copyright terms: Public domain W3C validator