![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsrmul | Structured version Visualization version GIF version |
Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
dvdsr.3 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dvdsrmul | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∥ (𝑌 · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
2 | simpr 484 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
3 | eqid 2735 | . . 3 ⊢ (𝑌 · 𝑋) = (𝑌 · 𝑋) | |
4 | oveq1 7438 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋)) | |
5 | 4 | eqeq1d 2737 | . . . 4 ⊢ (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋))) |
6 | 5 | rspcev 3622 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
7 | 2, 3, 6 | sylancl 586 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
8 | dvdsr.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
9 | dvdsr.2 | . . 3 ⊢ ∥ = (∥r‘𝑅) | |
10 | dvdsr.3 | . . 3 ⊢ · = (.r‘𝑅) | |
11 | 8, 9, 10 | dvdsr 20379 | . 2 ⊢ (𝑋 ∥ (𝑌 · 𝑋) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))) |
12 | 1, 7, 11 | sylanbrc 583 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∥ (𝑌 · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 .rcmulr 17299 ∥rcdsr 20371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-dvdsr 20374 |
This theorem is referenced by: dvdsrid 20384 dvdsrtr 20385 dvdsrmul1 20386 dvdsrneg 20387 unitmulclb 20398 unitgrp 20400 subrguss 20604 subrgunit 20607 isdrng2 20760 fidomndrnglem 20790 invrvald 22698 dvdsq1p 26217 1arithidom 33545 1arithufdlem3 33554 r1pcyc 33607 matunitlindflem2 37604 |
Copyright terms: Public domain | W3C validator |