MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrmul Structured version   Visualization version   GIF version

Theorem dvdsrmul 20273
Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsrmul ((𝑋𝐵𝑌𝐵) → 𝑋 (𝑌 · 𝑋))

Proof of Theorem dvdsrmul
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2 simpr 484 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
3 eqid 2729 . . 3 (𝑌 · 𝑋) = (𝑌 · 𝑋)
4 oveq1 7394 . . . . 5 (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋))
54eqeq1d 2731 . . . 4 (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋)))
65rspcev 3588 . . 3 ((𝑌𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))
72, 3, 6sylancl 586 . 2 ((𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))
8 dvdsr.1 . . 3 𝐵 = (Base‘𝑅)
9 dvdsr.2 . . 3 = (∥r𝑅)
10 dvdsr.3 . . 3 · = (.r𝑅)
118, 9, 10dvdsr 20271 . 2 (𝑋 (𝑌 · 𝑋) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)))
121, 7, 11sylanbrc 583 1 ((𝑋𝐵𝑌𝐵) → 𝑋 (𝑌 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  rcdsr 20263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-dvdsr 20266
This theorem is referenced by:  dvdsrid  20276  dvdsrtr  20277  dvdsrmul1  20278  dvdsrneg  20279  unitmulclb  20290  unitgrp  20292  subrguss  20496  subrgunit  20499  isdrng2  20652  fidomndrnglem  20681  invrvald  22563  dvdsq1p  26068  1arithidom  33508  1arithufdlem3  33517  r1pcyc  33572  matunitlindflem2  37611
  Copyright terms: Public domain W3C validator