| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsrmul | Structured version Visualization version GIF version | ||
| Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
| dvdsr.3 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dvdsrmul | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∥ (𝑌 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 3 | eqid 2736 | . . 3 ⊢ (𝑌 · 𝑋) = (𝑌 · 𝑋) | |
| 4 | oveq1 7417 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋)) | |
| 5 | 4 | eqeq1d 2738 | . . . 4 ⊢ (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋))) |
| 6 | 5 | rspcev 3606 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
| 7 | 2, 3, 6 | sylancl 586 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
| 8 | dvdsr.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | dvdsr.2 | . . 3 ⊢ ∥ = (∥r‘𝑅) | |
| 10 | dvdsr.3 | . . 3 ⊢ · = (.r‘𝑅) | |
| 11 | 8, 9, 10 | dvdsr 20327 | . 2 ⊢ (𝑋 ∥ (𝑌 · 𝑋) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))) |
| 12 | 1, 7, 11 | sylanbrc 583 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∥ (𝑌 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 .rcmulr 17277 ∥rcdsr 20319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-dvdsr 20322 |
| This theorem is referenced by: dvdsrid 20332 dvdsrtr 20333 dvdsrmul1 20334 dvdsrneg 20335 unitmulclb 20346 unitgrp 20348 subrguss 20552 subrgunit 20555 isdrng2 20708 fidomndrnglem 20737 invrvald 22619 dvdsq1p 26125 1arithidom 33557 1arithufdlem3 33566 r1pcyc 33621 matunitlindflem2 37646 |
| Copyright terms: Public domain | W3C validator |