|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dvdsrmul | Structured version Visualization version GIF version | ||
| Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) | 
| dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) | 
| dvdsr.3 | ⊢ · = (.r‘𝑅) | 
| Ref | Expression | 
|---|---|
| dvdsrmul | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∥ (𝑌 · 𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 3 | eqid 2737 | . . 3 ⊢ (𝑌 · 𝑋) = (𝑌 · 𝑋) | |
| 4 | oveq1 7438 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋)) | |
| 5 | 4 | eqeq1d 2739 | . . . 4 ⊢ (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋))) | 
| 6 | 5 | rspcev 3622 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) | 
| 7 | 2, 3, 6 | sylancl 586 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) | 
| 8 | dvdsr.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | dvdsr.2 | . . 3 ⊢ ∥ = (∥r‘𝑅) | |
| 10 | dvdsr.3 | . . 3 ⊢ · = (.r‘𝑅) | |
| 11 | 8, 9, 10 | dvdsr 20362 | . 2 ⊢ (𝑋 ∥ (𝑌 · 𝑋) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))) | 
| 12 | 1, 7, 11 | sylanbrc 583 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∥ (𝑌 · 𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 ∥rcdsr 20354 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-dvdsr 20357 | 
| This theorem is referenced by: dvdsrid 20367 dvdsrtr 20368 dvdsrmul1 20369 dvdsrneg 20370 unitmulclb 20381 unitgrp 20383 subrguss 20587 subrgunit 20590 isdrng2 20743 fidomndrnglem 20773 invrvald 22682 dvdsq1p 26202 1arithidom 33565 1arithufdlem3 33574 r1pcyc 33627 matunitlindflem2 37624 | 
| Copyright terms: Public domain | W3C validator |