MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrmul Structured version   Visualization version   GIF version

Theorem dvdsrmul 20284
Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsrmul ((𝑋𝐵𝑌𝐵) → 𝑋 (𝑌 · 𝑋))

Proof of Theorem dvdsrmul
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2 simpr 484 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
3 eqid 2733 . . 3 (𝑌 · 𝑋) = (𝑌 · 𝑋)
4 oveq1 7359 . . . . 5 (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋))
54eqeq1d 2735 . . . 4 (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋)))
65rspcev 3573 . . 3 ((𝑌𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))
72, 3, 6sylancl 586 . 2 ((𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))
8 dvdsr.1 . . 3 𝐵 = (Base‘𝑅)
9 dvdsr.2 . . 3 = (∥r𝑅)
10 dvdsr.3 . . 3 · = (.r𝑅)
118, 9, 10dvdsr 20282 . 2 (𝑋 (𝑌 · 𝑋) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)))
121, 7, 11sylanbrc 583 1 ((𝑋𝐵𝑌𝐵) → 𝑋 (𝑌 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  rcdsr 20274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-dvdsr 20277
This theorem is referenced by:  dvdsrid  20287  dvdsrtr  20288  dvdsrmul1  20289  dvdsrneg  20290  unitmulclb  20301  unitgrp  20303  subrguss  20504  subrgunit  20507  isdrng2  20660  fidomndrnglem  20689  invrvald  22592  dvdsq1p  26096  1arithidom  33509  1arithufdlem3  33518  r1pcyc  33574  matunitlindflem2  37677
  Copyright terms: Public domain W3C validator