![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsrmul | Structured version Visualization version GIF version |
Description: A left-multiple of ๐ is divisible by ๐. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
dvdsr.1 | โข ๐ต = (Baseโ๐ ) |
dvdsr.2 | โข โฅ = (โฅrโ๐ ) |
dvdsr.3 | โข ยท = (.rโ๐ ) |
Ref | Expression |
---|---|
dvdsrmul | โข ((๐ โ ๐ต โง ๐ โ ๐ต) โ ๐ โฅ (๐ ยท ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 โข ((๐ โ ๐ต โง ๐ โ ๐ต) โ ๐ โ ๐ต) | |
2 | simpr 484 | . . 3 โข ((๐ โ ๐ต โง ๐ โ ๐ต) โ ๐ โ ๐ต) | |
3 | eqid 2727 | . . 3 โข (๐ ยท ๐) = (๐ ยท ๐) | |
4 | oveq1 7421 | . . . . 5 โข (๐ง = ๐ โ (๐ง ยท ๐) = (๐ ยท ๐)) | |
5 | 4 | eqeq1d 2729 | . . . 4 โข (๐ง = ๐ โ ((๐ง ยท ๐) = (๐ ยท ๐) โ (๐ ยท ๐) = (๐ ยท ๐))) |
6 | 5 | rspcev 3607 | . . 3 โข ((๐ โ ๐ต โง (๐ ยท ๐) = (๐ ยท ๐)) โ โ๐ง โ ๐ต (๐ง ยท ๐) = (๐ ยท ๐)) |
7 | 2, 3, 6 | sylancl 585 | . 2 โข ((๐ โ ๐ต โง ๐ โ ๐ต) โ โ๐ง โ ๐ต (๐ง ยท ๐) = (๐ ยท ๐)) |
8 | dvdsr.1 | . . 3 โข ๐ต = (Baseโ๐ ) | |
9 | dvdsr.2 | . . 3 โข โฅ = (โฅrโ๐ ) | |
10 | dvdsr.3 | . . 3 โข ยท = (.rโ๐ ) | |
11 | 8, 9, 10 | dvdsr 20290 | . 2 โข (๐ โฅ (๐ ยท ๐) โ (๐ โ ๐ต โง โ๐ง โ ๐ต (๐ง ยท ๐) = (๐ ยท ๐))) |
12 | 1, 7, 11 | sylanbrc 582 | 1 โข ((๐ โ ๐ต โง ๐ โ ๐ต) โ ๐ โฅ (๐ ยท ๐)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1534 โ wcel 2099 โwrex 3065 class class class wbr 5142 โcfv 6542 (class class class)co 7414 Basecbs 17171 .rcmulr 17225 โฅrcdsr 20282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-dvdsr 20285 |
This theorem is referenced by: dvdsrid 20295 dvdsrtr 20296 dvdsrmul1 20297 dvdsrneg 20298 unitmulclb 20309 unitgrp 20311 subrguss 20515 subrgunit 20518 isdrng2 20627 fidomndrnglem 21247 invrvald 22565 dvdsq1p 26084 r1pcyc 33209 matunitlindflem2 37025 |
Copyright terms: Public domain | W3C validator |