| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version | ||
| Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
| unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitcl | ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 2 | eqid 2731 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | eqid 2731 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 4 | eqid 2731 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 5 | eqid 2731 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
| 6 | 1, 2, 3, 4, 5 | isunit 20297 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 7 | 6 | simplbi 497 | . 2 ⊢ (𝑋 ∈ 𝑈 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
| 8 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | 8, 3 | dvdsrcl 20289 | . 2 ⊢ (𝑋(∥r‘𝑅)(1r‘𝑅) → 𝑋 ∈ 𝐵) |
| 10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 ‘cfv 6487 Basecbs 17126 1rcur 20105 opprcoppr 20260 ∥rcdsr 20278 Unitcui 20279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fv 6495 df-ov 7355 df-dvdsr 20281 df-unit 20282 |
| This theorem is referenced by: unitss 20300 unitmulcl 20304 unitgrp 20307 ringinvcl 20316 unitnegcl 20321 ringunitnzdiv 20322 unitdvcl 20329 dvrid 20330 dvrcan1 20333 dvrcan3 20334 dvreq1 20335 irredrmul 20351 subrguss 20508 subrginv 20509 subrgunit 20511 unitrrg 20624 isdrng2 20664 gzrngunitlem 21375 gzrngunit 21376 zringunit 21409 matinv 22598 cramerimp 22607 unitnmn0 24589 nminvr 24590 nrginvrcnlem 24612 ig1peu 26113 dchrelbas3 27182 dchrmulcl 27193 isdrng4 33268 kerunit 33297 dvdsruasso2 33358 unitmulrprm 33500 1arithidomlem1 33507 1arithidomlem2 33508 1arithidom 33509 ply1unit 33545 m1pmeq 33554 fldhmf1 42189 invginvrid 48472 lincresunit3lem3 48580 lincresunit3lem1 48585 |
| Copyright terms: Public domain | W3C validator |