| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version | ||
| Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
| unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitcl | ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | eqid 2729 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 4 | eqid 2729 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 5 | eqid 2729 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
| 6 | 1, 2, 3, 4, 5 | isunit 20282 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 7 | 6 | simplbi 497 | . 2 ⊢ (𝑋 ∈ 𝑈 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
| 8 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | 8, 3 | dvdsrcl 20274 | . 2 ⊢ (𝑋(∥r‘𝑅)(1r‘𝑅) → 𝑋 ∈ 𝐵) |
| 10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 1rcur 20090 opprcoppr 20245 ∥rcdsr 20263 Unitcui 20264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-dvdsr 20266 df-unit 20267 |
| This theorem is referenced by: unitss 20285 unitmulcl 20289 unitgrp 20292 ringinvcl 20301 unitnegcl 20306 ringunitnzdiv 20307 unitdvcl 20314 dvrid 20315 dvrcan1 20318 dvrcan3 20319 dvreq1 20320 irredrmul 20336 subrguss 20496 subrginv 20497 subrgunit 20499 unitrrg 20612 isdrng2 20652 gzrngunitlem 21349 gzrngunit 21350 zringunit 21376 matinv 22564 cramerimp 22573 unitnmn0 24556 nminvr 24557 nrginvrcnlem 24579 ig1peu 26080 dchrelbas3 27149 dchrmulcl 27160 isdrng4 33245 kerunit 33297 dvdsruasso2 33357 unitmulrprm 33499 1arithidomlem1 33506 1arithidomlem2 33507 1arithidom 33508 ply1unit 33544 m1pmeq 33552 fldhmf1 42078 invginvrid 48355 lincresunit3lem3 48463 lincresunit3lem1 48468 |
| Copyright terms: Public domain | W3C validator |