![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
unitcl | ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | eqid 2740 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | eqid 2740 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
4 | eqid 2740 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
5 | eqid 2740 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
6 | 1, 2, 3, 4, 5 | isunit 20399 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
7 | 6 | simplbi 497 | . 2 ⊢ (𝑋 ∈ 𝑈 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
8 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
9 | 8, 3 | dvdsrcl 20391 | . 2 ⊢ (𝑋(∥r‘𝑅)(1r‘𝑅) → 𝑋 ∈ 𝐵) |
10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 1rcur 20208 opprcoppr 20359 ∥rcdsr 20380 Unitcui 20381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-dvdsr 20383 df-unit 20384 |
This theorem is referenced by: unitss 20402 unitmulcl 20406 unitgrp 20409 ringinvcl 20418 unitnegcl 20423 ringunitnzdiv 20424 unitdvcl 20431 dvrid 20432 dvrcan1 20435 dvrcan3 20436 dvreq1 20437 irredrmul 20453 subrguss 20615 subrginv 20616 subrgunit 20618 unitrrg 20725 isdrng2 20765 gzrngunitlem 21473 gzrngunit 21474 zringunit 21500 matinv 22704 cramerimp 22713 unitnmn0 24710 nminvr 24711 nrginvrcnlem 24733 ig1peu 26234 dchrelbas3 27300 dchrmulcl 27311 isdrng4 33264 kerunit 33314 dvdsruasso2 33379 unitmulrprm 33521 1arithidomlem1 33528 1arithidomlem2 33529 1arithidom 33530 ply1unit 33565 m1pmeq 33573 fldhmf1 42047 invginvrid 48092 lincresunit3lem3 48203 lincresunit3lem1 48208 |
Copyright terms: Public domain | W3C validator |