![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcl.1 | β’ π΅ = (Baseβπ ) |
unitcl.2 | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
unitcl | β’ (π β π β π β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.2 | . . . 4 β’ π = (Unitβπ ) | |
2 | eqid 2725 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
3 | eqid 2725 | . . . 4 β’ (β₯rβπ ) = (β₯rβπ ) | |
4 | eqid 2725 | . . . 4 β’ (opprβπ ) = (opprβπ ) | |
5 | eqid 2725 | . . . 4 β’ (β₯rβ(opprβπ )) = (β₯rβ(opprβπ )) | |
6 | 1, 2, 3, 4, 5 | isunit 20316 | . . 3 β’ (π β π β (π(β₯rβπ )(1rβπ ) β§ π(β₯rβ(opprβπ ))(1rβπ ))) |
7 | 6 | simplbi 496 | . 2 β’ (π β π β π(β₯rβπ )(1rβπ )) |
8 | unitcl.1 | . . 3 β’ π΅ = (Baseβπ ) | |
9 | 8, 3 | dvdsrcl 20308 | . 2 β’ (π(β₯rβπ )(1rβπ ) β π β π΅) |
10 | 7, 9 | syl 17 | 1 β’ (π β π β π β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 class class class wbr 5148 βcfv 6547 Basecbs 17179 1rcur 20125 opprcoppr 20276 β₯rcdsr 20297 Unitcui 20298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fv 6555 df-ov 7420 df-dvdsr 20300 df-unit 20301 |
This theorem is referenced by: unitss 20319 unitmulcl 20323 unitgrp 20326 ringinvcl 20335 unitnegcl 20340 ringunitnzdiv 20341 unitdvcl 20348 dvrid 20349 dvrcan1 20352 dvrcan3 20353 dvreq1 20354 irredrmul 20370 subrguss 20530 subrginv 20531 subrgunit 20533 isdrng2 20642 unitrrg 21244 gzrngunitlem 21369 gzrngunit 21370 zringunit 21396 matinv 22609 cramerimp 22618 unitnmn0 24615 nminvr 24616 nrginvrcnlem 24638 ig1peu 26139 dchrelbas3 27201 dchrmulcl 27212 isdrng4 33044 kerunit 33094 dvdsruasso2 33151 ply1unit 33330 m1pmeq 33331 fldhmf1 41630 invginvrid 47543 lincresunit3lem3 47654 lincresunit3lem1 47659 |
Copyright terms: Public domain | W3C validator |