| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version | ||
| Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
| unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitcl | ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 2 | eqid 2730 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | eqid 2730 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 4 | eqid 2730 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 5 | eqid 2730 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
| 6 | 1, 2, 3, 4, 5 | isunit 20288 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 7 | 6 | simplbi 497 | . 2 ⊢ (𝑋 ∈ 𝑈 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
| 8 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | 8, 3 | dvdsrcl 20280 | . 2 ⊢ (𝑋(∥r‘𝑅)(1r‘𝑅) → 𝑋 ∈ 𝐵) |
| 10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 ‘cfv 6513 Basecbs 17185 1rcur 20096 opprcoppr 20251 ∥rcdsr 20269 Unitcui 20270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-dvdsr 20272 df-unit 20273 |
| This theorem is referenced by: unitss 20291 unitmulcl 20295 unitgrp 20298 ringinvcl 20307 unitnegcl 20312 ringunitnzdiv 20313 unitdvcl 20320 dvrid 20321 dvrcan1 20324 dvrcan3 20325 dvreq1 20326 irredrmul 20342 subrguss 20502 subrginv 20503 subrgunit 20505 unitrrg 20618 isdrng2 20658 gzrngunitlem 21355 gzrngunit 21356 zringunit 21382 matinv 22570 cramerimp 22579 unitnmn0 24562 nminvr 24563 nrginvrcnlem 24585 ig1peu 26086 dchrelbas3 27155 dchrmulcl 27166 isdrng4 33251 kerunit 33303 dvdsruasso2 33363 unitmulrprm 33505 1arithidomlem1 33512 1arithidomlem2 33513 1arithidom 33514 ply1unit 33550 m1pmeq 33558 fldhmf1 42073 invginvrid 48345 lincresunit3lem3 48453 lincresunit3lem1 48458 |
| Copyright terms: Public domain | W3C validator |