![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcl.1 | β’ π΅ = (Baseβπ ) |
unitcl.2 | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
unitcl | β’ (π β π β π β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.2 | . . . 4 β’ π = (Unitβπ ) | |
2 | eqid 2733 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
3 | eqid 2733 | . . . 4 β’ (β₯rβπ ) = (β₯rβπ ) | |
4 | eqid 2733 | . . . 4 β’ (opprβπ ) = (opprβπ ) | |
5 | eqid 2733 | . . . 4 β’ (β₯rβ(opprβπ )) = (β₯rβ(opprβπ )) | |
6 | 1, 2, 3, 4, 5 | isunit 20187 | . . 3 β’ (π β π β (π(β₯rβπ )(1rβπ ) β§ π(β₯rβ(opprβπ ))(1rβπ ))) |
7 | 6 | simplbi 499 | . 2 β’ (π β π β π(β₯rβπ )(1rβπ )) |
8 | unitcl.1 | . . 3 β’ π΅ = (Baseβπ ) | |
9 | 8, 3 | dvdsrcl 20179 | . 2 β’ (π(β₯rβπ )(1rβπ ) β π β π΅) |
10 | 7, 9 | syl 17 | 1 β’ (π β π β π β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 class class class wbr 5149 βcfv 6544 Basecbs 17144 1rcur 20004 opprcoppr 20149 β₯rcdsr 20168 Unitcui 20169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-dvdsr 20171 df-unit 20172 |
This theorem is referenced by: unitss 20190 unitmulcl 20194 unitgrp 20197 ringinvcl 20206 unitnegcl 20211 ringunitnzdiv 20212 unitdvcl 20219 dvrid 20220 dvrcan1 20223 dvrcan3 20224 dvreq1 20225 irredrmul 20241 subrguss 20334 subrginv 20335 subrgunit 20337 isdrng2 20371 unitrrg 20909 gzrngunitlem 21010 gzrngunit 21011 zringunit 21036 matinv 22179 cramerimp 22188 unitnmn0 24185 nminvr 24186 nrginvrcnlem 24208 ig1peu 25689 dchrelbas3 26741 dchrmulcl 26752 isdrng4 32426 kerunit 32468 fldhmf1 41003 invginvrid 47091 lincresunit3lem3 47203 lincresunit3lem1 47208 |
Copyright terms: Public domain | W3C validator |