| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version | ||
| Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
| unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitcl | ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 2 | eqid 2734 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | eqid 2734 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 4 | eqid 2734 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 5 | eqid 2734 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
| 6 | 1, 2, 3, 4, 5 | isunit 20342 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 7 | 6 | simplbi 497 | . 2 ⊢ (𝑋 ∈ 𝑈 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
| 8 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | 8, 3 | dvdsrcl 20334 | . 2 ⊢ (𝑋(∥r‘𝑅)(1r‘𝑅) → 𝑋 ∈ 𝐵) |
| 10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 Basecbs 17230 1rcur 20147 opprcoppr 20302 ∥rcdsr 20323 Unitcui 20324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-dvdsr 20326 df-unit 20327 |
| This theorem is referenced by: unitss 20345 unitmulcl 20349 unitgrp 20352 ringinvcl 20361 unitnegcl 20366 ringunitnzdiv 20367 unitdvcl 20374 dvrid 20375 dvrcan1 20378 dvrcan3 20379 dvreq1 20380 irredrmul 20396 subrguss 20556 subrginv 20557 subrgunit 20559 unitrrg 20672 isdrng2 20712 gzrngunitlem 21413 gzrngunit 21414 zringunit 21440 matinv 22632 cramerimp 22641 unitnmn0 24626 nminvr 24627 nrginvrcnlem 24649 ig1peu 26151 dchrelbas3 27219 dchrmulcl 27230 isdrng4 33242 kerunit 33294 dvdsruasso2 33354 unitmulrprm 33496 1arithidomlem1 33503 1arithidomlem2 33504 1arithidom 33505 ply1unit 33540 m1pmeq 33548 fldhmf1 42066 invginvrid 48256 lincresunit3lem3 48364 lincresunit3lem1 48369 |
| Copyright terms: Public domain | W3C validator |