![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcl.1 | β’ π΅ = (Baseβπ ) |
unitcl.2 | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
unitcl | β’ (π β π β π β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.2 | . . . 4 β’ π = (Unitβπ ) | |
2 | eqid 2733 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
3 | eqid 2733 | . . . 4 β’ (β₯rβπ ) = (β₯rβπ ) | |
4 | eqid 2733 | . . . 4 β’ (opprβπ ) = (opprβπ ) | |
5 | eqid 2733 | . . . 4 β’ (β₯rβ(opprβπ )) = (β₯rβ(opprβπ )) | |
6 | 1, 2, 3, 4, 5 | isunit 20180 | . . 3 β’ (π β π β (π(β₯rβπ )(1rβπ ) β§ π(β₯rβ(opprβπ ))(1rβπ ))) |
7 | 6 | simplbi 499 | . 2 β’ (π β π β π(β₯rβπ )(1rβπ )) |
8 | unitcl.1 | . . 3 β’ π΅ = (Baseβπ ) | |
9 | 8, 3 | dvdsrcl 20172 | . 2 β’ (π(β₯rβπ )(1rβπ ) β π β π΅) |
10 | 7, 9 | syl 17 | 1 β’ (π β π β π β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 class class class wbr 5148 βcfv 6541 Basecbs 17141 1rcur 19999 opprcoppr 20142 β₯rcdsr 20161 Unitcui 20162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fv 6549 df-ov 7409 df-dvdsr 20164 df-unit 20165 |
This theorem is referenced by: unitss 20183 unitmulcl 20187 unitgrp 20190 ringinvcl 20199 unitnegcl 20204 ringunitnzdiv 20205 unitdvcl 20212 dvrid 20213 dvrcan1 20216 dvrcan3 20217 dvreq1 20218 irredrmul 20234 isdrng2 20322 subrguss 20371 subrginv 20372 subrgunit 20374 unitrrg 20902 gzrngunitlem 21003 gzrngunit 21004 zringunit 21028 matinv 22171 cramerimp 22180 unitnmn0 24177 nminvr 24178 nrginvrcnlem 24200 ig1peu 25681 dchrelbas3 26731 dchrmulcl 26742 isdrng4 32384 kerunit 32426 fldhmf1 40944 invginvrid 46997 lincresunit3lem3 47109 lincresunit3lem1 47114 |
Copyright terms: Public domain | W3C validator |