| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version | ||
| Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
| unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitcl | ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 2 | eqid 2730 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | eqid 2730 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 4 | eqid 2730 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 5 | eqid 2730 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
| 6 | 1, 2, 3, 4, 5 | isunit 20284 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 7 | 6 | simplbi 497 | . 2 ⊢ (𝑋 ∈ 𝑈 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
| 8 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | 8, 3 | dvdsrcl 20276 | . 2 ⊢ (𝑋(∥r‘𝑅)(1r‘𝑅) → 𝑋 ∈ 𝐵) |
| 10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 ‘cfv 6477 Basecbs 17112 1rcur 20092 opprcoppr 20247 ∥rcdsr 20265 Unitcui 20266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-dvdsr 20268 df-unit 20269 |
| This theorem is referenced by: unitss 20287 unitmulcl 20291 unitgrp 20294 ringinvcl 20303 unitnegcl 20308 ringunitnzdiv 20309 unitdvcl 20316 dvrid 20317 dvrcan1 20320 dvrcan3 20321 dvreq1 20322 irredrmul 20338 subrguss 20495 subrginv 20496 subrgunit 20498 unitrrg 20611 isdrng2 20651 gzrngunitlem 21362 gzrngunit 21363 zringunit 21396 matinv 22585 cramerimp 22594 unitnmn0 24576 nminvr 24577 nrginvrcnlem 24599 ig1peu 26100 dchrelbas3 27169 dchrmulcl 27180 isdrng4 33251 kerunit 33280 dvdsruasso2 33341 unitmulrprm 33483 1arithidomlem1 33490 1arithidomlem2 33491 1arithidom 33492 ply1unit 33528 m1pmeq 33537 fldhmf1 42102 invginvrid 48377 lincresunit3lem3 48485 lincresunit3lem1 48490 |
| Copyright terms: Public domain | W3C validator |