![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcl.1 | β’ π΅ = (Baseβπ ) |
unitcl.2 | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
unitcl | β’ (π β π β π β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.2 | . . . 4 β’ π = (Unitβπ ) | |
2 | eqid 2727 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
3 | eqid 2727 | . . . 4 β’ (β₯rβπ ) = (β₯rβπ ) | |
4 | eqid 2727 | . . . 4 β’ (opprβπ ) = (opprβπ ) | |
5 | eqid 2727 | . . . 4 β’ (β₯rβ(opprβπ )) = (β₯rβ(opprβπ )) | |
6 | 1, 2, 3, 4, 5 | isunit 20301 | . . 3 β’ (π β π β (π(β₯rβπ )(1rβπ ) β§ π(β₯rβ(opprβπ ))(1rβπ ))) |
7 | 6 | simplbi 497 | . 2 β’ (π β π β π(β₯rβπ )(1rβπ )) |
8 | unitcl.1 | . . 3 β’ π΅ = (Baseβπ ) | |
9 | 8, 3 | dvdsrcl 20293 | . 2 β’ (π(β₯rβπ )(1rβπ ) β π β π΅) |
10 | 7, 9 | syl 17 | 1 β’ (π β π β π β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 class class class wbr 5142 βcfv 6542 Basecbs 17171 1rcur 20112 opprcoppr 20261 β₯rcdsr 20282 Unitcui 20283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-dvdsr 20285 df-unit 20286 |
This theorem is referenced by: unitss 20304 unitmulcl 20308 unitgrp 20311 ringinvcl 20320 unitnegcl 20325 ringunitnzdiv 20326 unitdvcl 20333 dvrid 20334 dvrcan1 20337 dvrcan3 20338 dvreq1 20339 irredrmul 20355 subrguss 20515 subrginv 20516 subrgunit 20518 isdrng2 20627 unitrrg 21229 gzrngunitlem 21352 gzrngunit 21353 zringunit 21379 matinv 22566 cramerimp 22575 unitnmn0 24572 nminvr 24573 nrginvrcnlem 24595 ig1peu 26096 dchrelbas3 27158 dchrmulcl 27169 isdrng4 32932 kerunit 32974 ply1unit 33191 m1pmeq 33192 fldhmf1 41498 invginvrid 47354 lincresunit3lem3 47465 lincresunit3lem1 47470 |
Copyright terms: Public domain | W3C validator |