Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
unitcl | ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | eqid 2758 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | eqid 2758 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
4 | eqid 2758 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
5 | eqid 2758 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
6 | 1, 2, 3, 4, 5 | isunit 19491 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
7 | 6 | simplbi 501 | . 2 ⊢ (𝑋 ∈ 𝑈 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
8 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
9 | 8, 3 | dvdsrcl 19483 | . 2 ⊢ (𝑋(∥r‘𝑅)(1r‘𝑅) → 𝑋 ∈ 𝐵) |
10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 class class class wbr 5036 ‘cfv 6340 Basecbs 16554 1rcur 19332 opprcoppr 19456 ∥rcdsr 19472 Unitcui 19473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-dvdsr 19475 df-unit 19476 |
This theorem is referenced by: unitss 19494 unitmulcl 19498 unitgrp 19501 ringinvcl 19510 unitnegcl 19515 unitdvcl 19521 dvrid 19522 dvrcan1 19525 dvrcan3 19526 dvreq1 19527 irredrmul 19541 isdrng2 19593 subrguss 19631 subrginv 19632 subrgunit 19634 unitrrg 20147 gzrngunitlem 20244 gzrngunit 20245 zringunit 20269 matinv 21390 cramerimp 21399 unitnmn0 23383 nminvr 23384 nrginvrcnlem 23406 ig1peu 24884 dchrelbas3 25934 dchrmulcl 25945 kerunit 31060 invginvrid 45185 lincresunit3lem3 45297 lincresunit3lem1 45302 |
Copyright terms: Public domain | W3C validator |