![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
unitcl | ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | eqid 2735 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | eqid 2735 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
4 | eqid 2735 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
5 | eqid 2735 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
6 | 1, 2, 3, 4, 5 | isunit 20390 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
7 | 6 | simplbi 497 | . 2 ⊢ (𝑋 ∈ 𝑈 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
8 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
9 | 8, 3 | dvdsrcl 20382 | . 2 ⊢ (𝑋(∥r‘𝑅)(1r‘𝑅) → 𝑋 ∈ 𝐵) |
10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 1rcur 20199 opprcoppr 20350 ∥rcdsr 20371 Unitcui 20372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-dvdsr 20374 df-unit 20375 |
This theorem is referenced by: unitss 20393 unitmulcl 20397 unitgrp 20400 ringinvcl 20409 unitnegcl 20414 ringunitnzdiv 20415 unitdvcl 20422 dvrid 20423 dvrcan1 20426 dvrcan3 20427 dvreq1 20428 irredrmul 20444 subrguss 20604 subrginv 20605 subrgunit 20607 unitrrg 20720 isdrng2 20760 gzrngunitlem 21468 gzrngunit 21469 zringunit 21495 matinv 22699 cramerimp 22708 unitnmn0 24705 nminvr 24706 nrginvrcnlem 24728 ig1peu 26229 dchrelbas3 27297 dchrmulcl 27308 isdrng4 33279 kerunit 33329 dvdsruasso2 33394 unitmulrprm 33536 1arithidomlem1 33543 1arithidomlem2 33544 1arithidom 33545 ply1unit 33580 m1pmeq 33588 fldhmf1 42072 invginvrid 48212 lincresunit3lem3 48320 lincresunit3lem1 48325 |
Copyright terms: Public domain | W3C validator |