Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigof | Structured version Visualization version GIF version |
Description: A function of order G(x) is a function. (Contributed by AV, 18-May-2020.) |
Ref | Expression |
---|---|
elbigof | ⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐹:dom 𝐹⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbigo 45785 | . 2 ⊢ (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | |
2 | reex 10893 | . . . . 5 ⊢ ℝ ∈ V | |
3 | 2, 2 | elpm2 8620 | . . . 4 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ)) |
4 | 3 | simplbi 497 | . . 3 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℝ) |
5 | 4 | 3ad2ant1 1131 | . 2 ⊢ ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) → 𝐹:dom 𝐹⟶ℝ) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐹:dom 𝐹⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑pm cpm 8574 ℝcr 10801 · cmul 10807 +∞cpnf 10937 ≤ cle 10941 [,)cico 13010 Οcbigo 45781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pm 8576 df-bigo 45782 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |