| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigof | Structured version Visualization version GIF version | ||
| Description: A function of order G(x) is a function. (Contributed by AV, 18-May-2020.) |
| Ref | Expression |
|---|---|
| elbigof | ⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐹:dom 𝐹⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbigo 48530 | . 2 ⊢ (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | |
| 2 | reex 11165 | . . . . 5 ⊢ ℝ ∈ V | |
| 3 | 2, 2 | elpm2 8849 | . . . 4 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ)) |
| 4 | 3 | simplbi 497 | . . 3 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℝ) |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) → 𝐹:dom 𝐹⟶ℝ) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐹:dom 𝐹⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∩ cin 3915 ⊆ wss 3916 class class class wbr 5109 dom cdm 5640 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑pm cpm 8802 ℝcr 11073 · cmul 11079 +∞cpnf 11211 ≤ cle 11215 [,)cico 13314 Οcbigo 48526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-pm 8804 df-bigo 48527 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |