Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigof Structured version   Visualization version   GIF version

Theorem elbigof 47142
Description: A function of order G(x) is a function. (Contributed by AV, 18-May-2020.)
Assertion
Ref Expression
elbigof (𝐹 ∈ (Ο‘𝐺) → 𝐹:dom 𝐹⟶ℝ)

Proof of Theorem elbigof
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elbigo 47139 . 2 (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
2 reex 11197 . . . . 5 ℝ ∈ V
32, 2elpm2 8864 . . . 4 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
43simplbi 499 . . 3 (𝐹 ∈ (ℝ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℝ)
543ad2ant1 1134 . 2 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) → 𝐹:dom 𝐹⟶ℝ)
61, 5sylbi 216 1 (𝐹 ∈ (Ο‘𝐺) → 𝐹:dom 𝐹⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088  wcel 2107  wral 3062  wrex 3071  cin 3946  wss 3947   class class class wbr 5147  dom cdm 5675  wf 6536  cfv 6540  (class class class)co 7404  pm cpm 8817  cr 11105   · cmul 11111  +∞cpnf 11241  cle 11245  [,)cico 13322  Οcbigo 47135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-pm 8819  df-bigo 47136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator