|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigodm | Structured version Visualization version GIF version | ||
| Description: The domain of a function of order G(x) is a subset of the reals. (Contributed by AV, 18-May-2020.) | 
| Ref | Expression | 
|---|---|
| elbigodm | ⊢ (𝐹 ∈ (Ο‘𝐺) → dom 𝐹 ⊆ ℝ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elbigo 48477 | . 2 ⊢ (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | |
| 2 | reex 11247 | . . . . 5 ⊢ ℝ ∈ V | |
| 3 | 2, 2 | elpm2 8915 | . . . 4 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ)) | 
| 4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) | 
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) → dom 𝐹 ⊆ ℝ) | 
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐹 ∈ (Ο‘𝐺) → dom 𝐹 ⊆ ℝ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ∩ cin 3949 ⊆ wss 3950 class class class wbr 5142 dom cdm 5684 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ↑pm cpm 8868 ℝcr 11155 · cmul 11161 +∞cpnf 11293 ≤ cle 11297 [,)cico 13390 Οcbigo 48473 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-pm 8870 df-bigo 48474 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |