Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigodm Structured version   Visualization version   GIF version

Theorem elbigodm 45879
Description: The domain of a function of order G(x) is a subset of the reals. (Contributed by AV, 18-May-2020.)
Assertion
Ref Expression
elbigodm (𝐹 ∈ (Ο‘𝐺) → dom 𝐹 ⊆ ℝ)

Proof of Theorem elbigodm
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elbigo 45875 . 2 (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
2 reex 10972 . . . . 5 ℝ ∈ V
32, 2elpm2 8649 . . . 4 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
43simprbi 497 . . 3 (𝐹 ∈ (ℝ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
543ad2ant1 1132 . 2 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) → dom 𝐹 ⊆ ℝ)
61, 5sylbi 216 1 (𝐹 ∈ (Ο‘𝐺) → dom 𝐹 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2106  wral 3064  wrex 3065  cin 3885  wss 3886   class class class wbr 5073  dom cdm 5584  wf 6422  cfv 6426  (class class class)co 7267  pm cpm 8603  cr 10880   · cmul 10886  +∞cpnf 11016  cle 11020  [,)cico 13091  Οcbigo 45871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-sbc 3716  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-pm 8605  df-bigo 45872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator