Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigodm | Structured version Visualization version GIF version |
Description: The domain of a function of order G(x) is a subset of the reals. (Contributed by AV, 18-May-2020.) |
Ref | Expression |
---|---|
elbigodm | ⊢ (𝐹 ∈ (Ο‘𝐺) → dom 𝐹 ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbigo 45875 | . 2 ⊢ (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | |
2 | reex 10972 | . . . . 5 ⊢ ℝ ∈ V | |
3 | 2, 2 | elpm2 8649 | . . . 4 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ)) |
4 | 3 | simprbi 497 | . . 3 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
5 | 4 | 3ad2ant1 1132 | . 2 ⊢ ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) → dom 𝐹 ⊆ ℝ) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (𝐹 ∈ (Ο‘𝐺) → dom 𝐹 ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∩ cin 3885 ⊆ wss 3886 class class class wbr 5073 dom cdm 5584 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 ↑pm cpm 8603 ℝcr 10880 · cmul 10886 +∞cpnf 11016 ≤ cle 11020 [,)cico 13091 Οcbigo 45871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-pm 8605 df-bigo 45872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |