Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigodm | Structured version Visualization version GIF version |
Description: The domain of a function of order G(x) is a subset of the reals. (Contributed by AV, 18-May-2020.) |
Ref | Expression |
---|---|
elbigodm | ⊢ (𝐹 ∈ (Ο‘𝐺) → dom 𝐹 ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbigo 45849 | . 2 ⊢ (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | |
2 | reex 10946 | . . . . 5 ⊢ ℝ ∈ V | |
3 | 2, 2 | elpm2 8636 | . . . 4 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ)) |
4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
5 | 4 | 3ad2ant1 1131 | . 2 ⊢ ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) → dom 𝐹 ⊆ ℝ) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (𝐹 ∈ (Ο‘𝐺) → dom 𝐹 ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 ∩ cin 3890 ⊆ wss 3891 class class class wbr 5078 dom cdm 5588 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ↑pm cpm 8590 ℝcr 10854 · cmul 10860 +∞cpnf 10990 ≤ cle 10994 [,)cico 13063 Οcbigo 45845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-pm 8592 df-bigo 45846 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |