Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccxrd Structured version   Visualization version   GIF version

Theorem eliccxrd 44240
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccxrd.1 (𝜑𝐴 ∈ ℝ*)
eliccxrd.2 (𝜑𝐵 ∈ ℝ*)
eliccxrd.3 (𝜑𝐶 ∈ ℝ*)
eliccxrd.4 (𝜑𝐴𝐶)
eliccxrd.5 (𝜑𝐶𝐵)
Assertion
Ref Expression
eliccxrd (𝜑𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem eliccxrd
StepHypRef Expression
1 eliccxrd.4 . . 3 (𝜑𝐴𝐶)
2 eliccxrd.5 . . 3 (𝜑𝐶𝐵)
31, 2jca 513 . 2 (𝜑 → (𝐴𝐶𝐶𝐵))
4 eliccxrd.1 . . 3 (𝜑𝐴 ∈ ℝ*)
5 eliccxrd.2 . . 3 (𝜑𝐵 ∈ ℝ*)
6 eliccxrd.3 . . 3 (𝜑𝐶 ∈ ℝ*)
7 elicc4 13391 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
84, 5, 6, 7syl3anc 1372 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
93, 8mpbird 257 1 (𝜑𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107   class class class wbr 5149  (class class class)co 7409  *cxr 11247  cle 11249  [,]cicc 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-xr 11252  df-icc 13331
This theorem is referenced by:  inficc  44247  iccdificc  44252  sge0cl  45097  sge0p1  45130  sge0rpcpnf  45137  ovnsubaddlem1  45286  ovolval5lem1  45368
  Copyright terms: Public domain W3C validator