Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccxrd Structured version   Visualization version   GIF version

Theorem eliccxrd 45525
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccxrd.1 (𝜑𝐴 ∈ ℝ*)
eliccxrd.2 (𝜑𝐵 ∈ ℝ*)
eliccxrd.3 (𝜑𝐶 ∈ ℝ*)
eliccxrd.4 (𝜑𝐴𝐶)
eliccxrd.5 (𝜑𝐶𝐵)
Assertion
Ref Expression
eliccxrd (𝜑𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem eliccxrd
StepHypRef Expression
1 eliccxrd.4 . . 3 (𝜑𝐴𝐶)
2 eliccxrd.5 . . 3 (𝜑𝐶𝐵)
31, 2jca 511 . 2 (𝜑 → (𝐴𝐶𝐶𝐵))
4 eliccxrd.1 . . 3 (𝜑𝐴 ∈ ℝ*)
5 eliccxrd.2 . . 3 (𝜑𝐵 ∈ ℝ*)
6 eliccxrd.3 . . 3 (𝜑𝐶 ∈ ℝ*)
7 elicc4 13374 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
84, 5, 6, 7syl3anc 1373 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
93, 8mpbird 257 1 (𝜑𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5107  (class class class)co 7387  *cxr 11207  cle 11209  [,]cicc 13309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-xr 11212  df-icc 13313
This theorem is referenced by:  inficc  45532  iccdificc  45537  sge0cl  46379  sge0p1  46412  sge0rpcpnf  46419  ovnsubaddlem1  46568  ovolval5lem1  46650
  Copyright terms: Public domain W3C validator