Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccxrd Structured version   Visualization version   GIF version

Theorem eliccxrd 43772
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccxrd.1 (𝜑𝐴 ∈ ℝ*)
eliccxrd.2 (𝜑𝐵 ∈ ℝ*)
eliccxrd.3 (𝜑𝐶 ∈ ℝ*)
eliccxrd.4 (𝜑𝐴𝐶)
eliccxrd.5 (𝜑𝐶𝐵)
Assertion
Ref Expression
eliccxrd (𝜑𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem eliccxrd
StepHypRef Expression
1 eliccxrd.4 . . 3 (𝜑𝐴𝐶)
2 eliccxrd.5 . . 3 (𝜑𝐶𝐵)
31, 2jca 513 . 2 (𝜑 → (𝐴𝐶𝐶𝐵))
4 eliccxrd.1 . . 3 (𝜑𝐴 ∈ ℝ*)
5 eliccxrd.2 . . 3 (𝜑𝐵 ∈ ℝ*)
6 eliccxrd.3 . . 3 (𝜑𝐶 ∈ ℝ*)
7 elicc4 13332 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
84, 5, 6, 7syl3anc 1372 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
93, 8mpbird 257 1 (𝜑𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107   class class class wbr 5106  (class class class)co 7358  *cxr 11189  cle 11191  [,]cicc 13268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-iota 6449  df-fun 6499  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-xr 11194  df-icc 13272
This theorem is referenced by:  inficc  43779  iccdificc  43784  sge0cl  44629  sge0p1  44662  sge0rpcpnf  44669  ovnsubaddlem1  44818  ovolval5lem1  44900
  Copyright terms: Public domain W3C validator