![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccxrd | Structured version Visualization version GIF version |
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliccxrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
eliccxrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
eliccxrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
eliccxrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
eliccxrd.5 | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
Ref | Expression |
---|---|
eliccxrd | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccxrd.4 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | eliccxrd.5 | . . 3 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
4 | eliccxrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | eliccxrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
6 | eliccxrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
7 | elicc4 13476 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
8 | 4, 5, 6, 7 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
9 | 3, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7450 ℝ*cxr 11325 ≤ cle 11327 [,]cicc 13412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-xr 11330 df-icc 13416 |
This theorem is referenced by: inficc 45454 iccdificc 45459 sge0cl 46304 sge0p1 46337 sge0rpcpnf 46344 ovnsubaddlem1 46493 ovolval5lem1 46575 |
Copyright terms: Public domain | W3C validator |