Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccxrd | Structured version Visualization version GIF version |
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliccxrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
eliccxrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
eliccxrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
eliccxrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
eliccxrd.5 | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
Ref | Expression |
---|---|
eliccxrd | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccxrd.4 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | eliccxrd.5 | . . 3 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
4 | eliccxrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | eliccxrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
6 | eliccxrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
7 | elicc4 13075 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
8 | 4, 5, 6, 7 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
9 | 3, 8 | mpbird 256 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝ*cxr 10939 ≤ cle 10941 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-xr 10944 df-icc 13015 |
This theorem is referenced by: inficc 42962 iccdificc 42967 sge0cl 43809 sge0p1 43842 sge0rpcpnf 43849 ovnsubaddlem1 43998 ovolval5lem1 44080 |
Copyright terms: Public domain | W3C validator |