![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccxrd | Structured version Visualization version GIF version |
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliccxrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
eliccxrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
eliccxrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
eliccxrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
eliccxrd.5 | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
Ref | Expression |
---|---|
eliccxrd | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccxrd.4 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | eliccxrd.5 | . . 3 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
3 | 1, 2 | jca 510 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
4 | eliccxrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | eliccxrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
6 | eliccxrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
7 | elicc4 13445 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
8 | 4, 5, 6, 7 | syl3anc 1368 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
9 | 3, 8 | mpbird 256 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 class class class wbr 5153 (class class class)co 7424 ℝ*cxr 11297 ≤ cle 11299 [,]cicc 13381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6506 df-fun 6556 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-xr 11302 df-icc 13385 |
This theorem is referenced by: inficc 45152 iccdificc 45157 sge0cl 46002 sge0p1 46035 sge0rpcpnf 46042 ovnsubaddlem1 46191 ovolval5lem1 46273 |
Copyright terms: Public domain | W3C validator |