Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccxrd | Structured version Visualization version GIF version |
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliccxrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
eliccxrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
eliccxrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
eliccxrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
eliccxrd.5 | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
Ref | Expression |
---|---|
eliccxrd | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccxrd.4 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | eliccxrd.5 | . . 3 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
3 | 1, 2 | jca 513 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
4 | eliccxrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | eliccxrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
6 | eliccxrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
7 | elicc4 13251 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
8 | 4, 5, 6, 7 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
9 | 3, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2106 class class class wbr 5096 (class class class)co 7341 ℝ*cxr 11113 ≤ cle 11115 [,]cicc 13187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3731 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-iota 6435 df-fun 6485 df-fv 6491 df-ov 7344 df-oprab 7345 df-mpo 7346 df-xr 11118 df-icc 13191 |
This theorem is referenced by: inficc 43460 iccdificc 43465 sge0cl 44308 sge0p1 44341 sge0rpcpnf 44348 ovnsubaddlem1 44497 ovolval5lem1 44579 |
Copyright terms: Public domain | W3C validator |