| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccxrd | Structured version Visualization version GIF version | ||
| Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliccxrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| eliccxrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| eliccxrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| eliccxrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| eliccxrd.5 | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| eliccxrd | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliccxrd.4 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 2 | eliccxrd.5 | . . 3 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 4 | eliccxrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | eliccxrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 6 | eliccxrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 7 | elicc4 13374 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 8 | 4, 5, 6, 7 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 9 | 3, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝ*cxr 11207 ≤ cle 11209 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-xr 11212 df-icc 13313 |
| This theorem is referenced by: inficc 45532 iccdificc 45537 sge0cl 46379 sge0p1 46412 sge0rpcpnf 46419 ovnsubaddlem1 46568 ovolval5lem1 46650 |
| Copyright terms: Public domain | W3C validator |