Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccxrd Structured version   Visualization version   GIF version

Theorem eliccxrd 42107
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccxrd.1 (𝜑𝐴 ∈ ℝ*)
eliccxrd.2 (𝜑𝐵 ∈ ℝ*)
eliccxrd.3 (𝜑𝐶 ∈ ℝ*)
eliccxrd.4 (𝜑𝐴𝐶)
eliccxrd.5 (𝜑𝐶𝐵)
Assertion
Ref Expression
eliccxrd (𝜑𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem eliccxrd
StepHypRef Expression
1 eliccxrd.4 . . 3 (𝜑𝐴𝐶)
2 eliccxrd.5 . . 3 (𝜑𝐶𝐵)
31, 2jca 515 . 2 (𝜑 → (𝐴𝐶𝐶𝐵))
4 eliccxrd.1 . . 3 (𝜑𝐴 ∈ ℝ*)
5 eliccxrd.2 . . 3 (𝜑𝐵 ∈ ℝ*)
6 eliccxrd.3 . . 3 (𝜑𝐶 ∈ ℝ*)
7 elicc4 12792 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
84, 5, 6, 7syl3anc 1368 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
93, 8mpbird 260 1 (𝜑𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2114   class class class wbr 5042  (class class class)co 7140  *cxr 10663  cle 10665  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-iota 6293  df-fun 6336  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-xr 10668  df-icc 12733
This theorem is referenced by:  inficc  42114  iccdificc  42119  sge0cl  42963  sge0p1  42996  sge0rpcpnf  43003  ovnsubaddlem1  43152  ovolval5lem1  43234
  Copyright terms: Public domain W3C validator