Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem1 Structured version   Visualization version   GIF version

Theorem ovolval5lem1 44579
Description: (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛) ))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵) ))) +𝑒 𝑊)). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem1.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
ovolval5lem1.b ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
ovolval5lem1.w (𝜑𝑊 ∈ ℝ+)
ovolval5lem1.c 𝐶 = {𝑛 ∈ ℕ ∣ 𝐴 < 𝐵}
Assertion
Ref Expression
ovolval5lem1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
Distinct variable groups:   𝐶,𝑛   𝑛,𝑊   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)

Proof of Theorem ovolval5lem1
StepHypRef Expression
1 nfv 1917 . . 3 𝑛𝜑
2 nnex 12089 . . . 4 ℕ ∈ V
32a1i 11 . . 3 (𝜑 → ℕ ∈ V)
4 volf 24803 . . . . 5 vol:dom vol⟶(0[,]+∞)
54a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
6 ioombl 24839 . . . . 5 ((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵) ∈ dom vol
76a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵) ∈ dom vol)
85, 7ffvelcdmd 7027 . . 3 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ∈ (0[,]+∞))
91, 3, 8sge0xrclmpt 44355 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ∈ ℝ*)
10 0xr 11132 . . . . 5 0 ∈ ℝ*
1110a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ*)
12 pnfxr 11139 . . . . 5 +∞ ∈ ℝ*
1312a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
14 ovolval5lem1.a . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
15 ovolval5lem1.b . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
16 volicore 44508 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
1714, 15, 16syl2anc 585 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
18 ovolval5lem1.w . . . . . . . . 9 (𝜑𝑊 ∈ ℝ+)
1918rpred 12882 . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
2019adantr 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
21 2nn 12156 . . . . . . . . . . 11 2 ∈ ℕ
2221a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 2 ∈ ℕ)
23 nnnn0 12350 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
24 nnexpcl 13905 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
2522, 23, 24syl2anc 585 . . . . . . . . 9 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
2625nnred 12098 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ)
2726adantl 483 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
2825nnne0d 12133 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ≠ 0)
2928adantl 483 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
3020, 27, 29redivcld 11913 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ)
3117, 30readdcld 11114 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ)
3231rexrd 11135 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ*)
3315rexrd 11135 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
34 icombl 24838 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
3514, 33, 34syl2anc 585 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴[,)𝐵) ∈ dom vol)
36 volge0 43890 . . . . . 6 ((𝐴[,)𝐵) ∈ dom vol → 0 ≤ (vol‘(𝐴[,)𝐵)))
3735, 36syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐴[,)𝐵)))
3818adantr 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ+)
3925nnrpd 12880 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
4039adantl 483 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
4138, 40rpdivcld 12899 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ+)
4241rpge0d 12886 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝑊 / (2↑𝑛)))
4317, 30, 37, 42addge0d 11661 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
44 rexr 11131 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ*)
4512a1i 11 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → +∞ ∈ ℝ*)
46 ltpnf 12966 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) < +∞)
4744, 45, 46xrltled 12994 . . . . 5 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ≤ +∞)
4831, 47syl 17 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ≤ +∞)
4911, 13, 32, 43, 48eliccxrd 43453 . . 3 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ (0[,]+∞))
501, 3, 49sge0xrclmpt 44355 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) ∈ ℝ*)
515, 35ffvelcdmd 7027 . . . 4 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐴[,)𝐵)) ∈ (0[,]+∞))
521, 3, 51sge0xrclmpt 44355 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) ∈ ℝ*)
5319rexrd 11135 . . 3 (𝜑𝑊 ∈ ℝ*)
5452, 53xaddcld 13145 . 2 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊) ∈ ℝ*)
5514, 30resubcld 11513 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (𝑊 / (2↑𝑛))) ∈ ℝ)
56 volioore 43919 . . . . . . . 8 (((𝐴 − (𝑊 / (2↑𝑛))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
5755, 15, 56syl2anc 585 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
5857adantr 482 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
59 iftrue 4487 . . . . . . 7 ((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵 → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))))
6059adantl 483 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))))
6115recnd 11113 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℂ)
6214recnd 11113 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
6330recnd 11113 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℂ)
6461, 62, 63subsubd 11470 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6564adantr 482 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6658, 60, 653eqtrd 2781 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6715, 14resubcld 11513 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝐴) ∈ ℝ)
6814, 15sublevolico 43913 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
6967, 17, 30, 68leadd1dd 11699 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝐴) + (𝑊 / (2↑𝑛))) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7069adantr 482 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → ((𝐵𝐴) + (𝑊 / (2↑𝑛))) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7166, 70eqbrtrd 5122 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7257adantr 482 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
73 iffalse 4490 . . . . . . 7 (¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵 → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = 0)
7473adantl 483 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = 0)
7572, 74eqtrd 2777 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = 0)
7643adantr 482 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → 0 ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7775, 76eqbrtrd 5122 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7871, 77pm2.61dan 811 . . 3 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
791, 3, 8, 49, 78sge0lempt 44337 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))))
8017, 30rexaddd 13078 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))) = ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
8180eqcomd 2743 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) = ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))
8281mpteq2dva 5200 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛)))) = (𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛)))))
8382fveq2d 6838 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) = (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))))
8430rexrd 11135 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ*)
85 rexr 11131 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) ∈ ℝ*)
8612a1i 11 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → +∞ ∈ ℝ*)
87 ltpnf 12966 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) < +∞)
8885, 86, 87xrltled 12994 . . . . . . 7 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) ≤ +∞)
8930, 88syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ≤ +∞)
9011, 13, 84, 42, 89eliccxrd 43453 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ (0[,]+∞))
911, 3, 51, 90sge0xadd 44362 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛))))))
9210a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
9312a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
9418rpge0d 12886 . . . . . . 7 (𝜑 → 0 ≤ 𝑊)
9519ltpnfd 12967 . . . . . . 7 (𝜑𝑊 < +∞)
9692, 93, 53, 94, 95elicod 13239 . . . . . 6 (𝜑𝑊 ∈ (0[,)+∞))
9796sge0ad2en 44358 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛)))) = 𝑊)
9897oveq2d 7362 . . . 4 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
9983, 91, 983eqtrd 2781 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
10050, 99xreqled 43256 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
1019, 50, 54, 79, 100xrletrd 13006 1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1541  wcel 2106  wne 2941  {crab 3405  Vcvv 3443  ifcif 4481   class class class wbr 5100  cmpt 5183  dom cdm 5627  wf 6484  cfv 6488  (class class class)co 7346  cr 10980  0cc0 10981   + caddc 10984  +∞cpnf 11116  *cxr 11118   < clt 11119  cle 11120  cmin 11315   / cdiv 11742  cn 12083  2c2 12138  0cn0 12343  +crp 12840   +𝑒 cxad 12956  (,)cioo 13189  [,)cico 13191  [,]cicc 13192  cexp 13892  volcvol 24737  Σ^csumge0 44289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-inf2 9507  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7604  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-2o 8377  df-er 8578  df-map 8697  df-pm 8698  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-fi 9277  df-sup 9308  df-inf 9309  df-oi 9376  df-dju 9767  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-n0 12344  df-z 12430  df-uz 12693  df-q 12799  df-rp 12841  df-xneg 12958  df-xadd 12959  df-xmul 12960  df-ioo 13193  df-ico 13195  df-icc 13196  df-fz 13350  df-fzo 13493  df-fl 13622  df-seq 13832  df-exp 13893  df-hash 14155  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051  df-clim 15301  df-rlim 15302  df-sum 15502  df-rest 17235  df-topgen 17256  df-psmet 20699  df-xmet 20700  df-met 20701  df-bl 20702  df-mopn 20703  df-top 22153  df-topon 22170  df-bases 22206  df-cmp 22648  df-ovol 24738  df-vol 24739  df-sumge0 44290
This theorem is referenced by:  ovolval5lem2  44580
  Copyright terms: Public domain W3C validator