Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem1 Structured version   Visualization version   GIF version

Theorem ovolval5lem1 45354
Description: (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛) ))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵) ))) +𝑒 𝑊)). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem1.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
ovolval5lem1.b ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
ovolval5lem1.w (𝜑𝑊 ∈ ℝ+)
ovolval5lem1.c 𝐶 = {𝑛 ∈ ℕ ∣ 𝐴 < 𝐵}
Assertion
Ref Expression
ovolval5lem1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
Distinct variable groups:   𝐶,𝑛   𝑛,𝑊   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)

Proof of Theorem ovolval5lem1
StepHypRef Expression
1 nfv 1917 . . 3 𝑛𝜑
2 nnex 12214 . . . 4 ℕ ∈ V
32a1i 11 . . 3 (𝜑 → ℕ ∈ V)
4 volf 25037 . . . . 5 vol:dom vol⟶(0[,]+∞)
54a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
6 ioombl 25073 . . . . 5 ((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵) ∈ dom vol
76a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵) ∈ dom vol)
85, 7ffvelcdmd 7084 . . 3 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ∈ (0[,]+∞))
91, 3, 8sge0xrclmpt 45130 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ∈ ℝ*)
10 0xr 11257 . . . . 5 0 ∈ ℝ*
1110a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ*)
12 pnfxr 11264 . . . . 5 +∞ ∈ ℝ*
1312a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
14 ovolval5lem1.a . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
15 ovolval5lem1.b . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
16 volicore 45283 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
1714, 15, 16syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
18 ovolval5lem1.w . . . . . . . . 9 (𝜑𝑊 ∈ ℝ+)
1918rpred 13012 . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
2019adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
21 2nn 12281 . . . . . . . . . . 11 2 ∈ ℕ
2221a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 2 ∈ ℕ)
23 nnnn0 12475 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
24 nnexpcl 14036 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
2522, 23, 24syl2anc 584 . . . . . . . . 9 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
2625nnred 12223 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ)
2726adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
2825nnne0d 12258 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ≠ 0)
2928adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
3020, 27, 29redivcld 12038 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ)
3117, 30readdcld 11239 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ)
3231rexrd 11260 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ*)
3315rexrd 11260 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
34 icombl 25072 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
3514, 33, 34syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴[,)𝐵) ∈ dom vol)
36 volge0 44663 . . . . . 6 ((𝐴[,)𝐵) ∈ dom vol → 0 ≤ (vol‘(𝐴[,)𝐵)))
3735, 36syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐴[,)𝐵)))
3818adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ+)
3925nnrpd 13010 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
4039adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
4138, 40rpdivcld 13029 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ+)
4241rpge0d 13016 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝑊 / (2↑𝑛)))
4317, 30, 37, 42addge0d 11786 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
44 rexr 11256 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ*)
4512a1i 11 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → +∞ ∈ ℝ*)
46 ltpnf 13096 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) < +∞)
4744, 45, 46xrltled 13125 . . . . 5 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ≤ +∞)
4831, 47syl 17 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ≤ +∞)
4911, 13, 32, 43, 48eliccxrd 44226 . . 3 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ (0[,]+∞))
501, 3, 49sge0xrclmpt 45130 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) ∈ ℝ*)
515, 35ffvelcdmd 7084 . . . 4 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐴[,)𝐵)) ∈ (0[,]+∞))
521, 3, 51sge0xrclmpt 45130 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) ∈ ℝ*)
5319rexrd 11260 . . 3 (𝜑𝑊 ∈ ℝ*)
5452, 53xaddcld 13276 . 2 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊) ∈ ℝ*)
5514, 30resubcld 11638 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (𝑊 / (2↑𝑛))) ∈ ℝ)
56 volioore 44692 . . . . . . . 8 (((𝐴 − (𝑊 / (2↑𝑛))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
5755, 15, 56syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
5857adantr 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
59 iftrue 4533 . . . . . . 7 ((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵 → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))))
6059adantl 482 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))))
6115recnd 11238 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℂ)
6214recnd 11238 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
6330recnd 11238 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℂ)
6461, 62, 63subsubd 11595 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6564adantr 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6658, 60, 653eqtrd 2776 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6715, 14resubcld 11638 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝐴) ∈ ℝ)
6814, 15sublevolico 44686 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
6967, 17, 30, 68leadd1dd 11824 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝐴) + (𝑊 / (2↑𝑛))) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7069adantr 481 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → ((𝐵𝐴) + (𝑊 / (2↑𝑛))) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7166, 70eqbrtrd 5169 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7257adantr 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
73 iffalse 4536 . . . . . . 7 (¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵 → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = 0)
7473adantl 482 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = 0)
7572, 74eqtrd 2772 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = 0)
7643adantr 481 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → 0 ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7775, 76eqbrtrd 5169 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7871, 77pm2.61dan 811 . . 3 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
791, 3, 8, 49, 78sge0lempt 45112 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))))
8017, 30rexaddd 13209 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))) = ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
8180eqcomd 2738 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) = ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))
8281mpteq2dva 5247 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛)))) = (𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛)))))
8382fveq2d 6892 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) = (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))))
8430rexrd 11260 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ*)
85 rexr 11256 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) ∈ ℝ*)
8612a1i 11 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → +∞ ∈ ℝ*)
87 ltpnf 13096 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) < +∞)
8885, 86, 87xrltled 13125 . . . . . . 7 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) ≤ +∞)
8930, 88syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ≤ +∞)
9011, 13, 84, 42, 89eliccxrd 44226 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ (0[,]+∞))
911, 3, 51, 90sge0xadd 45137 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛))))))
9210a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
9312a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
9418rpge0d 13016 . . . . . . 7 (𝜑 → 0 ≤ 𝑊)
9519ltpnfd 13097 . . . . . . 7 (𝜑𝑊 < +∞)
9692, 93, 53, 94, 95elicod 13370 . . . . . 6 (𝜑𝑊 ∈ (0[,)+∞))
9796sge0ad2en 45133 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛)))) = 𝑊)
9897oveq2d 7421 . . . 4 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
9983, 91, 983eqtrd 2776 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
10050, 99xreqled 44026 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
1019, 50, 54, 79, 100xrletrd 13137 1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  {crab 3432  Vcvv 3474  ifcif 4527   class class class wbr 5147  cmpt 5230  dom cdm 5675  wf 6536  cfv 6540  (class class class)co 7405  cr 11105  0cc0 11106   + caddc 11109  +∞cpnf 11241  *cxr 11243   < clt 11244  cle 11245  cmin 11440   / cdiv 11867  cn 12208  2c2 12263  0cn0 12468  +crp 12970   +𝑒 cxad 13086  (,)cioo 13320  [,)cico 13322  [,]cicc 13323  cexp 14023  volcvol 24971  Σ^csumge0 45064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-rest 17364  df-topgen 17385  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-bases 22440  df-cmp 22882  df-ovol 24972  df-vol 24973  df-sumge0 45065
This theorem is referenced by:  ovolval5lem2  45355
  Copyright terms: Public domain W3C validator