Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem1 Structured version   Visualization version   GIF version

Theorem ovolval5lem1 46608
Description: (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛) ))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵) ))) +𝑒 𝑊)). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem1.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
ovolval5lem1.b ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
ovolval5lem1.w (𝜑𝑊 ∈ ℝ+)
ovolval5lem1.c 𝐶 = {𝑛 ∈ ℕ ∣ 𝐴 < 𝐵}
Assertion
Ref Expression
ovolval5lem1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
Distinct variable groups:   𝐶,𝑛   𝑛,𝑊   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)

Proof of Theorem ovolval5lem1
StepHypRef Expression
1 nfv 1912 . . 3 𝑛𝜑
2 nnex 12270 . . . 4 ℕ ∈ V
32a1i 11 . . 3 (𝜑 → ℕ ∈ V)
4 volf 25578 . . . . 5 vol:dom vol⟶(0[,]+∞)
54a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
6 ioombl 25614 . . . . 5 ((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵) ∈ dom vol
76a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵) ∈ dom vol)
85, 7ffvelcdmd 7105 . . 3 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ∈ (0[,]+∞))
91, 3, 8sge0xrclmpt 46384 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ∈ ℝ*)
10 0xr 11306 . . . . 5 0 ∈ ℝ*
1110a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ*)
12 pnfxr 11313 . . . . 5 +∞ ∈ ℝ*
1312a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
14 ovolval5lem1.a . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
15 ovolval5lem1.b . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
16 volicore 46537 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
1714, 15, 16syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
18 ovolval5lem1.w . . . . . . . . 9 (𝜑𝑊 ∈ ℝ+)
1918rpred 13075 . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
2019adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
21 2nn 12337 . . . . . . . . . . 11 2 ∈ ℕ
2221a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 2 ∈ ℕ)
23 nnnn0 12531 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
24 nnexpcl 14112 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
2522, 23, 24syl2anc 584 . . . . . . . . 9 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
2625nnred 12279 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ)
2726adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
2825nnne0d 12314 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ≠ 0)
2928adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
3020, 27, 29redivcld 12093 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ)
3117, 30readdcld 11288 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ)
3231rexrd 11309 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ*)
3315rexrd 11309 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
34 icombl 25613 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
3514, 33, 34syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴[,)𝐵) ∈ dom vol)
36 volge0 45917 . . . . . 6 ((𝐴[,)𝐵) ∈ dom vol → 0 ≤ (vol‘(𝐴[,)𝐵)))
3735, 36syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐴[,)𝐵)))
3818adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ+)
3925nnrpd 13073 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
4039adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
4138, 40rpdivcld 13092 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ+)
4241rpge0d 13079 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝑊 / (2↑𝑛)))
4317, 30, 37, 42addge0d 11837 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
44 rexr 11305 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ*)
4512a1i 11 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → +∞ ∈ ℝ*)
46 ltpnf 13160 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) < +∞)
4744, 45, 46xrltled 13189 . . . . 5 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ≤ +∞)
4831, 47syl 17 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ≤ +∞)
4911, 13, 32, 43, 48eliccxrd 45480 . . 3 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ (0[,]+∞))
501, 3, 49sge0xrclmpt 46384 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) ∈ ℝ*)
515, 35ffvelcdmd 7105 . . . 4 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐴[,)𝐵)) ∈ (0[,]+∞))
521, 3, 51sge0xrclmpt 46384 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) ∈ ℝ*)
5319rexrd 11309 . . 3 (𝜑𝑊 ∈ ℝ*)
5452, 53xaddcld 13340 . 2 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊) ∈ ℝ*)
5514, 30resubcld 11689 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (𝑊 / (2↑𝑛))) ∈ ℝ)
56 volioore 45946 . . . . . . . 8 (((𝐴 − (𝑊 / (2↑𝑛))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
5755, 15, 56syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
5857adantr 480 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
59 iftrue 4537 . . . . . . 7 ((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵 → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))))
6059adantl 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))))
6115recnd 11287 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℂ)
6214recnd 11287 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
6330recnd 11287 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℂ)
6461, 62, 63subsubd 11646 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6564adantr 480 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6658, 60, 653eqtrd 2779 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6715, 14resubcld 11689 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝐴) ∈ ℝ)
6814, 15sublevolico 45940 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
6967, 17, 30, 68leadd1dd 11875 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝐴) + (𝑊 / (2↑𝑛))) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7069adantr 480 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → ((𝐵𝐴) + (𝑊 / (2↑𝑛))) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7166, 70eqbrtrd 5170 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7257adantr 480 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
73 iffalse 4540 . . . . . . 7 (¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵 → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = 0)
7473adantl 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = 0)
7572, 74eqtrd 2775 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = 0)
7643adantr 480 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → 0 ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7775, 76eqbrtrd 5170 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7871, 77pm2.61dan 813 . . 3 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
791, 3, 8, 49, 78sge0lempt 46366 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))))
8017, 30rexaddd 13273 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))) = ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
8180eqcomd 2741 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) = ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))
8281mpteq2dva 5248 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛)))) = (𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛)))))
8382fveq2d 6911 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) = (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))))
8430rexrd 11309 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ*)
85 rexr 11305 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) ∈ ℝ*)
8612a1i 11 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → +∞ ∈ ℝ*)
87 ltpnf 13160 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) < +∞)
8885, 86, 87xrltled 13189 . . . . . . 7 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) ≤ +∞)
8930, 88syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ≤ +∞)
9011, 13, 84, 42, 89eliccxrd 45480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ (0[,]+∞))
911, 3, 51, 90sge0xadd 46391 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛))))))
9210a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
9312a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
9418rpge0d 13079 . . . . . . 7 (𝜑 → 0 ≤ 𝑊)
9519ltpnfd 13161 . . . . . . 7 (𝜑𝑊 < +∞)
9692, 93, 53, 94, 95elicod 13434 . . . . . 6 (𝜑𝑊 ∈ (0[,)+∞))
9796sge0ad2en 46387 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛)))) = 𝑊)
9897oveq2d 7447 . . . 4 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
9983, 91, 983eqtrd 2779 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
10050, 99xreqled 45280 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
1019, 50, 54, 79, 100xrletrd 13201 1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433  Vcvv 3478  ifcif 4531   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153   + caddc 11156  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  +crp 13032   +𝑒 cxad 13150  (,)cioo 13384  [,)cico 13386  [,]cicc 13387  cexp 14099  volcvol 25512  Σ^csumge0 46318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cmp 23411  df-ovol 25513  df-vol 25514  df-sumge0 46319
This theorem is referenced by:  ovolval5lem2  46609
  Copyright terms: Public domain W3C validator