Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem1 Structured version   Visualization version   GIF version

Theorem ovolval5lem1 44979
Description: (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛) ))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵) ))) +𝑒 𝑊)). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem1.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
ovolval5lem1.b ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
ovolval5lem1.w (𝜑𝑊 ∈ ℝ+)
ovolval5lem1.c 𝐶 = {𝑛 ∈ ℕ ∣ 𝐴 < 𝐵}
Assertion
Ref Expression
ovolval5lem1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
Distinct variable groups:   𝐶,𝑛   𝑛,𝑊   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)

Proof of Theorem ovolval5lem1
StepHypRef Expression
1 nfv 1918 . . 3 𝑛𝜑
2 nnex 12164 . . . 4 ℕ ∈ V
32a1i 11 . . 3 (𝜑 → ℕ ∈ V)
4 volf 24909 . . . . 5 vol:dom vol⟶(0[,]+∞)
54a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
6 ioombl 24945 . . . . 5 ((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵) ∈ dom vol
76a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵) ∈ dom vol)
85, 7ffvelcdmd 7037 . . 3 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ∈ (0[,]+∞))
91, 3, 8sge0xrclmpt 44755 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ∈ ℝ*)
10 0xr 11207 . . . . 5 0 ∈ ℝ*
1110a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ*)
12 pnfxr 11214 . . . . 5 +∞ ∈ ℝ*
1312a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
14 ovolval5lem1.a . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
15 ovolval5lem1.b . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
16 volicore 44908 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
1714, 15, 16syl2anc 585 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
18 ovolval5lem1.w . . . . . . . . 9 (𝜑𝑊 ∈ ℝ+)
1918rpred 12962 . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
2019adantr 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
21 2nn 12231 . . . . . . . . . . 11 2 ∈ ℕ
2221a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 2 ∈ ℕ)
23 nnnn0 12425 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
24 nnexpcl 13986 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
2522, 23, 24syl2anc 585 . . . . . . . . 9 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
2625nnred 12173 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ)
2726adantl 483 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
2825nnne0d 12208 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ≠ 0)
2928adantl 483 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
3020, 27, 29redivcld 11988 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ)
3117, 30readdcld 11189 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ)
3231rexrd 11210 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ*)
3315rexrd 11210 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
34 icombl 24944 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
3514, 33, 34syl2anc 585 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴[,)𝐵) ∈ dom vol)
36 volge0 44288 . . . . . 6 ((𝐴[,)𝐵) ∈ dom vol → 0 ≤ (vol‘(𝐴[,)𝐵)))
3735, 36syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐴[,)𝐵)))
3818adantr 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ+)
3925nnrpd 12960 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
4039adantl 483 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
4138, 40rpdivcld 12979 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ+)
4241rpge0d 12966 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝑊 / (2↑𝑛)))
4317, 30, 37, 42addge0d 11736 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
44 rexr 11206 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ*)
4512a1i 11 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → +∞ ∈ ℝ*)
46 ltpnf 13046 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) < +∞)
4744, 45, 46xrltled 13075 . . . . 5 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ≤ +∞)
4831, 47syl 17 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ≤ +∞)
4911, 13, 32, 43, 48eliccxrd 43851 . . 3 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ (0[,]+∞))
501, 3, 49sge0xrclmpt 44755 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) ∈ ℝ*)
515, 35ffvelcdmd 7037 . . . 4 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐴[,)𝐵)) ∈ (0[,]+∞))
521, 3, 51sge0xrclmpt 44755 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) ∈ ℝ*)
5319rexrd 11210 . . 3 (𝜑𝑊 ∈ ℝ*)
5452, 53xaddcld 13226 . 2 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊) ∈ ℝ*)
5514, 30resubcld 11588 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (𝑊 / (2↑𝑛))) ∈ ℝ)
56 volioore 44317 . . . . . . . 8 (((𝐴 − (𝑊 / (2↑𝑛))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
5755, 15, 56syl2anc 585 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
5857adantr 482 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
59 iftrue 4493 . . . . . . 7 ((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵 → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))))
6059adantl 483 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))))
6115recnd 11188 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℂ)
6214recnd 11188 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
6330recnd 11188 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℂ)
6461, 62, 63subsubd 11545 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6564adantr 482 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6658, 60, 653eqtrd 2777 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6715, 14resubcld 11588 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝐴) ∈ ℝ)
6814, 15sublevolico 44311 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
6967, 17, 30, 68leadd1dd 11774 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝐴) + (𝑊 / (2↑𝑛))) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7069adantr 482 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → ((𝐵𝐴) + (𝑊 / (2↑𝑛))) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7166, 70eqbrtrd 5128 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7257adantr 482 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
73 iffalse 4496 . . . . . . 7 (¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵 → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = 0)
7473adantl 483 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = 0)
7572, 74eqtrd 2773 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = 0)
7643adantr 482 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → 0 ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7775, 76eqbrtrd 5128 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7871, 77pm2.61dan 812 . . 3 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
791, 3, 8, 49, 78sge0lempt 44737 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))))
8017, 30rexaddd 13159 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))) = ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
8180eqcomd 2739 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) = ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))
8281mpteq2dva 5206 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛)))) = (𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛)))))
8382fveq2d 6847 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) = (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))))
8430rexrd 11210 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ*)
85 rexr 11206 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) ∈ ℝ*)
8612a1i 11 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → +∞ ∈ ℝ*)
87 ltpnf 13046 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) < +∞)
8885, 86, 87xrltled 13075 . . . . . . 7 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) ≤ +∞)
8930, 88syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ≤ +∞)
9011, 13, 84, 42, 89eliccxrd 43851 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ (0[,]+∞))
911, 3, 51, 90sge0xadd 44762 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛))))))
9210a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
9312a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
9418rpge0d 12966 . . . . . . 7 (𝜑 → 0 ≤ 𝑊)
9519ltpnfd 13047 . . . . . . 7 (𝜑𝑊 < +∞)
9692, 93, 53, 94, 95elicod 13320 . . . . . 6 (𝜑𝑊 ∈ (0[,)+∞))
9796sge0ad2en 44758 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛)))) = 𝑊)
9897oveq2d 7374 . . . 4 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
9983, 91, 983eqtrd 2777 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
10050, 99xreqled 43651 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
1019, 50, 54, 79, 100xrletrd 13087 1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2940  {crab 3406  Vcvv 3444  ifcif 4487   class class class wbr 5106  cmpt 5189  dom cdm 5634  wf 6493  cfv 6497  (class class class)co 7358  cr 11055  0cc0 11056   + caddc 11059  +∞cpnf 11191  *cxr 11193   < clt 11194  cle 11195  cmin 11390   / cdiv 11817  cn 12158  2c2 12213  0cn0 12418  +crp 12920   +𝑒 cxad 13036  (,)cioo 13270  [,)cico 13272  [,]cicc 13273  cexp 13973  volcvol 24843  Σ^csumge0 44689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8651  df-map 8770  df-pm 8771  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fi 9352  df-sup 9383  df-inf 9384  df-oi 9451  df-dju 9842  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-z 12505  df-uz 12769  df-q 12879  df-rp 12921  df-xneg 13038  df-xadd 13039  df-xmul 13040  df-ioo 13274  df-ico 13276  df-icc 13277  df-fz 13431  df-fzo 13574  df-fl 13703  df-seq 13913  df-exp 13974  df-hash 14237  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376  df-rlim 15377  df-sum 15577  df-rest 17309  df-topgen 17330  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-top 22259  df-topon 22276  df-bases 22312  df-cmp 22754  df-ovol 24844  df-vol 24845  df-sumge0 44690
This theorem is referenced by:  ovolval5lem2  44980
  Copyright terms: Public domain W3C validator