Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoub Structured version   Visualization version   GIF version

Theorem icoub 45472
Description: A left-closed, right-open interval does not contain its upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
icoub (𝐴 ∈ ℝ* → ¬ 𝐵 ∈ (𝐴[,)𝐵))

Proof of Theorem icoub
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ*)
2 icossxr 13453 . . . . 5 (𝐴[,)𝐵) ⊆ ℝ*
3 id 22 . . . . 5 (𝐵 ∈ (𝐴[,)𝐵) → 𝐵 ∈ (𝐴[,)𝐵))
42, 3sselid 3961 . . . 4 (𝐵 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*)
54adantl 481 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*)
6 simpr 484 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ (𝐴[,)𝐵))
7 icoltub 45454 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 < 𝐵)
81, 5, 6, 7syl3anc 1372 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 < 𝐵)
9 xrltnr 13142 . . . 4 (𝐵 ∈ ℝ* → ¬ 𝐵 < 𝐵)
104, 9syl 17 . . 3 (𝐵 ∈ (𝐴[,)𝐵) → ¬ 𝐵 < 𝐵)
1110adantl 481 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → ¬ 𝐵 < 𝐵)
128, 11pm2.65da 816 1 (𝐴 ∈ ℝ* → ¬ 𝐵 ∈ (𝐴[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2107   class class class wbr 5123  (class class class)co 7412  *cxr 11275   < clt 11276  [,)cico 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-pre-lttri 11210  ax-pre-lttrn 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-ico 13374
This theorem is referenced by:  fge0npnf  46315
  Copyright terms: Public domain W3C validator