Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoub Structured version   Visualization version   GIF version

Theorem icoub 41667
Description: A left-closed, right-open interval does not contain its upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
icoub (𝐴 ∈ ℝ* → ¬ 𝐵 ∈ (𝐴[,)𝐵))

Proof of Theorem icoub
StepHypRef Expression
1 simpl 483 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ*)
2 icossxr 12811 . . . . 5 (𝐴[,)𝐵) ⊆ ℝ*
3 id 22 . . . . 5 (𝐵 ∈ (𝐴[,)𝐵) → 𝐵 ∈ (𝐴[,)𝐵))
42, 3sseldi 3969 . . . 4 (𝐵 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*)
54adantl 482 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*)
6 simpr 485 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ (𝐴[,)𝐵))
7 icoltub 41649 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 < 𝐵)
81, 5, 6, 7syl3anc 1365 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 < 𝐵)
9 xrltnr 12504 . . . 4 (𝐵 ∈ ℝ* → ¬ 𝐵 < 𝐵)
104, 9syl 17 . . 3 (𝐵 ∈ (𝐴[,)𝐵) → ¬ 𝐵 < 𝐵)
1110adantl 482 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ (𝐴[,)𝐵)) → ¬ 𝐵 < 𝐵)
128, 11pm2.65da 813 1 (𝐴 ∈ ℝ* → ¬ 𝐵 ∈ (𝐴[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2107   class class class wbr 5063  (class class class)co 7148  *cxr 10663   < clt 10664  [,)cico 12730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7680  df-2nd 7681  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-ico 12734
This theorem is referenced by:  fge0npnf  42515
  Copyright terms: Public domain W3C validator