![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoub | Structured version Visualization version GIF version |
Description: A left-closed, right-open interval does not contain its upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
icoub | ⊢ (𝐴 ∈ ℝ* → ¬ 𝐵 ∈ (𝐴[,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ*) | |
2 | icossxr 12507 | . . . . 5 ⊢ (𝐴[,)𝐵) ⊆ ℝ* | |
3 | id 22 | . . . . 5 ⊢ (𝐵 ∈ (𝐴[,)𝐵) → 𝐵 ∈ (𝐴[,)𝐵)) | |
4 | 2, 3 | sseldi 3796 | . . . 4 ⊢ (𝐵 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*) |
5 | 4 | adantl 474 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*) |
6 | simpr 478 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ (𝐴[,)𝐵)) | |
7 | icoltub 40479 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 < 𝐵) | |
8 | 1, 5, 6, 7 | syl3anc 1491 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (𝐴[,)𝐵)) → 𝐵 < 𝐵) |
9 | xrltnr 12200 | . . . 4 ⊢ (𝐵 ∈ ℝ* → ¬ 𝐵 < 𝐵) | |
10 | 4, 9 | syl 17 | . . 3 ⊢ (𝐵 ∈ (𝐴[,)𝐵) → ¬ 𝐵 < 𝐵) |
11 | 10 | adantl 474 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (𝐴[,)𝐵)) → ¬ 𝐵 < 𝐵) |
12 | 8, 11 | pm2.65da 852 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐵 ∈ (𝐴[,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∈ wcel 2157 class class class wbr 4843 (class class class)co 6878 ℝ*cxr 10362 < clt 10363 [,)cico 12426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-pre-lttri 10298 ax-pre-lttrn 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-ico 12430 |
This theorem is referenced by: fge0npnf 41327 |
Copyright terms: Public domain | W3C validator |