Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inficc Structured version   Visualization version   GIF version

Theorem inficc 42688
Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
inficc.a (𝜑𝐴 ∈ ℝ*)
inficc.b (𝜑𝐵 ∈ ℝ*)
inficc.s (𝜑𝑆 ⊆ (𝐴[,]𝐵))
inficc.n0 (𝜑𝑆 ≠ ∅)
Assertion
Ref Expression
inficc (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵))

Proof of Theorem inficc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inficc.a . 2 (𝜑𝐴 ∈ ℝ*)
2 inficc.b . 2 (𝜑𝐵 ∈ ℝ*)
3 inficc.s . . . 4 (𝜑𝑆 ⊆ (𝐴[,]𝐵))
4 iccssxr 12983 . . . . 5 (𝐴[,]𝐵) ⊆ ℝ*
54a1i 11 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ*)
63, 5sstrd 3897 . . 3 (𝜑𝑆 ⊆ ℝ*)
7 infxrcl 12888 . . 3 (𝑆 ⊆ ℝ* → inf(𝑆, ℝ*, < ) ∈ ℝ*)
86, 7syl 17 . 2 (𝜑 → inf(𝑆, ℝ*, < ) ∈ ℝ*)
91adantr 484 . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ*)
102adantr 484 . . . . 5 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ*)
113sselda 3887 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝐴[,]𝐵))
12 iccgelb 12956 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
139, 10, 11, 12syl3anc 1373 . . . 4 ((𝜑𝑥𝑆) → 𝐴𝑥)
1413ralrimiva 3095 . . 3 (𝜑 → ∀𝑥𝑆 𝐴𝑥)
15 infxrgelb 12890 . . . 4 ((𝑆 ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥𝑆 𝐴𝑥))
166, 1, 15syl2anc 587 . . 3 (𝜑 → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥𝑆 𝐴𝑥))
1714, 16mpbird 260 . 2 (𝜑𝐴 ≤ inf(𝑆, ℝ*, < ))
18 inficc.n0 . . . 4 (𝜑𝑆 ≠ ∅)
19 n0 4247 . . . 4 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
2018, 19sylib 221 . . 3 (𝜑 → ∃𝑥 𝑥𝑆)
218adantr 484 . . . . . 6 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ∈ ℝ*)
224, 11sseldi 3885 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ*)
236adantr 484 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑆 ⊆ ℝ*)
24 simpr 488 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥𝑆)
25 infxrlb 12889 . . . . . . 7 ((𝑆 ⊆ ℝ*𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥)
2623, 24, 25syl2anc 587 . . . . . 6 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥)
27 iccleub 12955 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
289, 10, 11, 27syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
2921, 22, 10, 26, 28xrletrd 12717 . . . . 5 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝐵)
3029ex 416 . . . 4 (𝜑 → (𝑥𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵))
3130exlimdv 1941 . . 3 (𝜑 → (∃𝑥 𝑥𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵))
3220, 31mpd 15 . 2 (𝜑 → inf(𝑆, ℝ*, < ) ≤ 𝐵)
331, 2, 8, 17, 32eliccxrd 42681 1 (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wex 1787  wcel 2112  wne 2932  wral 3051  wss 3853  c0 4223   class class class wbr 5039  (class class class)co 7191  infcinf 9035  *cxr 10831   < clt 10832  cle 10833  [,]cicc 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-icc 12907
This theorem is referenced by:  ovnf  43719
  Copyright terms: Public domain W3C validator