Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inficc Structured version   Visualization version   GIF version

Theorem inficc 42158
Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
inficc.a (𝜑𝐴 ∈ ℝ*)
inficc.b (𝜑𝐵 ∈ ℝ*)
inficc.s (𝜑𝑆 ⊆ (𝐴[,]𝐵))
inficc.n0 (𝜑𝑆 ≠ ∅)
Assertion
Ref Expression
inficc (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵))

Proof of Theorem inficc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inficc.a . 2 (𝜑𝐴 ∈ ℝ*)
2 inficc.b . 2 (𝜑𝐵 ∈ ℝ*)
3 inficc.s . . . 4 (𝜑𝑆 ⊆ (𝐴[,]𝐵))
4 iccssxr 12812 . . . . 5 (𝐴[,]𝐵) ⊆ ℝ*
54a1i 11 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ*)
63, 5sstrd 3928 . . 3 (𝜑𝑆 ⊆ ℝ*)
7 infxrcl 12718 . . 3 (𝑆 ⊆ ℝ* → inf(𝑆, ℝ*, < ) ∈ ℝ*)
86, 7syl 17 . 2 (𝜑 → inf(𝑆, ℝ*, < ) ∈ ℝ*)
91adantr 484 . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ*)
102adantr 484 . . . . 5 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ*)
113sselda 3918 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝐴[,]𝐵))
12 iccgelb 12785 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
139, 10, 11, 12syl3anc 1368 . . . 4 ((𝜑𝑥𝑆) → 𝐴𝑥)
1413ralrimiva 3152 . . 3 (𝜑 → ∀𝑥𝑆 𝐴𝑥)
15 infxrgelb 12720 . . . 4 ((𝑆 ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥𝑆 𝐴𝑥))
166, 1, 15syl2anc 587 . . 3 (𝜑 → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥𝑆 𝐴𝑥))
1714, 16mpbird 260 . 2 (𝜑𝐴 ≤ inf(𝑆, ℝ*, < ))
18 inficc.n0 . . . 4 (𝜑𝑆 ≠ ∅)
19 n0 4263 . . . 4 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
2018, 19sylib 221 . . 3 (𝜑 → ∃𝑥 𝑥𝑆)
218adantr 484 . . . . . 6 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ∈ ℝ*)
224, 11sseldi 3916 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ*)
236adantr 484 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑆 ⊆ ℝ*)
24 simpr 488 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥𝑆)
25 infxrlb 12719 . . . . . . 7 ((𝑆 ⊆ ℝ*𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥)
2623, 24, 25syl2anc 587 . . . . . 6 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥)
27 iccleub 12784 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
289, 10, 11, 27syl3anc 1368 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
2921, 22, 10, 26, 28xrletrd 12547 . . . . 5 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝐵)
3029ex 416 . . . 4 (𝜑 → (𝑥𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵))
3130exlimdv 1934 . . 3 (𝜑 → (∃𝑥 𝑥𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵))
3220, 31mpd 15 . 2 (𝜑 → inf(𝑆, ℝ*, < ) ≤ 𝐵)
331, 2, 8, 17, 32eliccxrd 42151 1 (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wex 1781  wcel 2112  wne 2990  wral 3109  wss 3884  c0 4246   class class class wbr 5033  (class class class)co 7139  infcinf 8893  *cxr 10667   < clt 10668  cle 10669  [,]cicc 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-icc 12737
This theorem is referenced by:  ovnf  43189
  Copyright terms: Public domain W3C validator