![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inficc | Structured version Visualization version GIF version |
Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
inficc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
inficc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
inficc.s | ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) |
inficc.n0 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
Ref | Expression |
---|---|
inficc | ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inficc.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | inficc.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | inficc.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) | |
4 | iccssxr 13490 | . . . . 5 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ*) |
6 | 3, 5 | sstrd 4019 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℝ*) |
7 | infxrcl 13395 | . . 3 ⊢ (𝑆 ⊆ ℝ* → inf(𝑆, ℝ*, < ) ∈ ℝ*) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ ℝ*) |
9 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ*) |
10 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ*) |
11 | 3 | sselda 4008 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (𝐴[,]𝐵)) |
12 | iccgelb 13463 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) | |
13 | 9, 10, 11, 12 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ≤ 𝑥) |
14 | 13 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥) |
15 | infxrgelb 13397 | . . . 4 ⊢ ((𝑆 ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥)) | |
16 | 6, 1, 15 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥)) |
17 | 14, 16 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ≤ inf(𝑆, ℝ*, < )) |
18 | inficc.n0 | . . . 4 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
19 | n0 4376 | . . . 4 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑆) | |
20 | 18, 19 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝑆) |
21 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ∈ ℝ*) |
22 | 4, 11 | sselid 4006 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ*) |
23 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ℝ*) |
24 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
25 | infxrlb 13396 | . . . . . . 7 ⊢ ((𝑆 ⊆ ℝ* ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥) | |
26 | 23, 24, 25 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥) |
27 | iccleub 13462 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) | |
28 | 9, 10, 11, 27 | syl3anc 1371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝐵) |
29 | 21, 22, 10, 26, 28 | xrletrd 13224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝐵) |
30 | 29 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵)) |
31 | 30 | exlimdv 1932 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵)) |
32 | 20, 31 | mpd 15 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ≤ 𝐵) |
33 | 1, 2, 8, 17, 32 | eliccxrd 45445 | 1 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 (class class class)co 7448 infcinf 9510 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-icc 13414 |
This theorem is referenced by: ovnf 46484 |
Copyright terms: Public domain | W3C validator |