| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inficc | Structured version Visualization version GIF version | ||
| Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| inficc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| inficc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| inficc.s | ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) |
| inficc.n0 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Ref | Expression |
|---|---|
| inficc | ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inficc.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | inficc.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | inficc.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) | |
| 4 | iccssxr 13337 | . . . . 5 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ*) |
| 6 | 3, 5 | sstrd 3941 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℝ*) |
| 7 | infxrcl 13240 | . . 3 ⊢ (𝑆 ⊆ ℝ* → inf(𝑆, ℝ*, < ) ∈ ℝ*) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ ℝ*) |
| 9 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ*) |
| 10 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ*) |
| 11 | 3 | sselda 3930 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 12 | iccgelb 13309 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) | |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ≤ 𝑥) |
| 14 | 13 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥) |
| 15 | infxrgelb 13242 | . . . 4 ⊢ ((𝑆 ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥)) | |
| 16 | 6, 1, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥)) |
| 17 | 14, 16 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ≤ inf(𝑆, ℝ*, < )) |
| 18 | inficc.n0 | . . . 4 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 19 | n0 4302 | . . . 4 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑆) | |
| 20 | 18, 19 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝑆) |
| 21 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ∈ ℝ*) |
| 22 | 4, 11 | sselid 3928 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ*) |
| 23 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ℝ*) |
| 24 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 25 | infxrlb 13241 | . . . . . . 7 ⊢ ((𝑆 ⊆ ℝ* ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥) | |
| 26 | 23, 24, 25 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥) |
| 27 | iccleub 13308 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) | |
| 28 | 9, 10, 11, 27 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝐵) |
| 29 | 21, 22, 10, 26, 28 | xrletrd 13067 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝐵) |
| 30 | 29 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵)) |
| 31 | 30 | exlimdv 1934 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵)) |
| 32 | 20, 31 | mpd 15 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ≤ 𝐵) |
| 33 | 1, 2, 8, 17, 32 | eliccxrd 45689 | 1 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ⊆ wss 3898 ∅c0 4282 class class class wbr 5095 (class class class)co 7355 infcinf 9336 ℝ*cxr 11156 < clt 11157 ≤ cle 11158 [,]cicc 13255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-icc 13259 |
| This theorem is referenced by: ovnf 46723 |
| Copyright terms: Public domain | W3C validator |