| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inficc | Structured version Visualization version GIF version | ||
| Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| inficc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| inficc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| inficc.s | ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) |
| inficc.n0 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Ref | Expression |
|---|---|
| inficc | ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inficc.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | inficc.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | inficc.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) | |
| 4 | iccssxr 13452 | . . . . 5 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ*) |
| 6 | 3, 5 | sstrd 3974 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℝ*) |
| 7 | infxrcl 13355 | . . 3 ⊢ (𝑆 ⊆ ℝ* → inf(𝑆, ℝ*, < ) ∈ ℝ*) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ ℝ*) |
| 9 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ*) |
| 10 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ*) |
| 11 | 3 | sselda 3963 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 12 | iccgelb 13424 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) | |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ≤ 𝑥) |
| 14 | 13 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥) |
| 15 | infxrgelb 13357 | . . . 4 ⊢ ((𝑆 ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥)) | |
| 16 | 6, 1, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥)) |
| 17 | 14, 16 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ≤ inf(𝑆, ℝ*, < )) |
| 18 | inficc.n0 | . . . 4 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 19 | n0 4333 | . . . 4 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑆) | |
| 20 | 18, 19 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝑆) |
| 21 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ∈ ℝ*) |
| 22 | 4, 11 | sselid 3961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ*) |
| 23 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ℝ*) |
| 24 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 25 | infxrlb 13356 | . . . . . . 7 ⊢ ((𝑆 ⊆ ℝ* ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥) | |
| 26 | 23, 24, 25 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥) |
| 27 | iccleub 13423 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) | |
| 28 | 9, 10, 11, 27 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝐵) |
| 29 | 21, 22, 10, 26, 28 | xrletrd 13183 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝐵) |
| 30 | 29 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵)) |
| 31 | 30 | exlimdv 1933 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵)) |
| 32 | 20, 31 | mpd 15 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ≤ 𝐵) |
| 33 | 1, 2, 8, 17, 32 | eliccxrd 45536 | 1 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 (class class class)co 7410 infcinf 9458 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 [,]cicc 13370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-icc 13374 |
| This theorem is referenced by: ovnf 46572 |
| Copyright terms: Public domain | W3C validator |