| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inficc | Structured version Visualization version GIF version | ||
| Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| inficc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| inficc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| inficc.s | ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) |
| inficc.n0 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Ref | Expression |
|---|---|
| inficc | ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inficc.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | inficc.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | inficc.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) | |
| 4 | iccssxr 13351 | . . . . 5 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ*) |
| 6 | 3, 5 | sstrd 3948 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℝ*) |
| 7 | infxrcl 13254 | . . 3 ⊢ (𝑆 ⊆ ℝ* → inf(𝑆, ℝ*, < ) ∈ ℝ*) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ ℝ*) |
| 9 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ*) |
| 10 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ*) |
| 11 | 3 | sselda 3937 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 12 | iccgelb 13323 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) | |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ≤ 𝑥) |
| 14 | 13 | ralrimiva 3121 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥) |
| 15 | infxrgelb 13256 | . . . 4 ⊢ ((𝑆 ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥)) | |
| 16 | 6, 1, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥)) |
| 17 | 14, 16 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ≤ inf(𝑆, ℝ*, < )) |
| 18 | inficc.n0 | . . . 4 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 19 | n0 4306 | . . . 4 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑆) | |
| 20 | 18, 19 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝑆) |
| 21 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ∈ ℝ*) |
| 22 | 4, 11 | sselid 3935 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ*) |
| 23 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ℝ*) |
| 24 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 25 | infxrlb 13255 | . . . . . . 7 ⊢ ((𝑆 ⊆ ℝ* ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥) | |
| 26 | 23, 24, 25 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥) |
| 27 | iccleub 13322 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) | |
| 28 | 9, 10, 11, 27 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝐵) |
| 29 | 21, 22, 10, 26, 28 | xrletrd 13082 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝐵) |
| 30 | 29 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵)) |
| 31 | 30 | exlimdv 1933 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵)) |
| 32 | 20, 31 | mpd 15 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ≤ 𝐵) |
| 33 | 1, 2, 8, 17, 32 | eliccxrd 45509 | 1 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3905 ∅c0 4286 class class class wbr 5095 (class class class)co 7353 infcinf 9350 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 [,]cicc 13269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-icc 13273 |
| This theorem is referenced by: ovnf 46545 |
| Copyright terms: Public domain | W3C validator |