Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inficc Structured version   Visualization version   GIF version

Theorem inficc 45543
Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
inficc.a (𝜑𝐴 ∈ ℝ*)
inficc.b (𝜑𝐵 ∈ ℝ*)
inficc.s (𝜑𝑆 ⊆ (𝐴[,]𝐵))
inficc.n0 (𝜑𝑆 ≠ ∅)
Assertion
Ref Expression
inficc (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵))

Proof of Theorem inficc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inficc.a . 2 (𝜑𝐴 ∈ ℝ*)
2 inficc.b . 2 (𝜑𝐵 ∈ ℝ*)
3 inficc.s . . . 4 (𝜑𝑆 ⊆ (𝐴[,]𝐵))
4 iccssxr 13452 . . . . 5 (𝐴[,]𝐵) ⊆ ℝ*
54a1i 11 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ*)
63, 5sstrd 3974 . . 3 (𝜑𝑆 ⊆ ℝ*)
7 infxrcl 13355 . . 3 (𝑆 ⊆ ℝ* → inf(𝑆, ℝ*, < ) ∈ ℝ*)
86, 7syl 17 . 2 (𝜑 → inf(𝑆, ℝ*, < ) ∈ ℝ*)
91adantr 480 . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ*)
102adantr 480 . . . . 5 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ*)
113sselda 3963 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝐴[,]𝐵))
12 iccgelb 13424 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
139, 10, 11, 12syl3anc 1373 . . . 4 ((𝜑𝑥𝑆) → 𝐴𝑥)
1413ralrimiva 3133 . . 3 (𝜑 → ∀𝑥𝑆 𝐴𝑥)
15 infxrgelb 13357 . . . 4 ((𝑆 ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥𝑆 𝐴𝑥))
166, 1, 15syl2anc 584 . . 3 (𝜑 → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥𝑆 𝐴𝑥))
1714, 16mpbird 257 . 2 (𝜑𝐴 ≤ inf(𝑆, ℝ*, < ))
18 inficc.n0 . . . 4 (𝜑𝑆 ≠ ∅)
19 n0 4333 . . . 4 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
2018, 19sylib 218 . . 3 (𝜑 → ∃𝑥 𝑥𝑆)
218adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ∈ ℝ*)
224, 11sselid 3961 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ*)
236adantr 480 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑆 ⊆ ℝ*)
24 simpr 484 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥𝑆)
25 infxrlb 13356 . . . . . . 7 ((𝑆 ⊆ ℝ*𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥)
2623, 24, 25syl2anc 584 . . . . . 6 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥)
27 iccleub 13423 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
289, 10, 11, 27syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
2921, 22, 10, 26, 28xrletrd 13183 . . . . 5 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝐵)
3029ex 412 . . . 4 (𝜑 → (𝑥𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵))
3130exlimdv 1933 . . 3 (𝜑 → (∃𝑥 𝑥𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵))
3220, 31mpd 15 . 2 (𝜑 → inf(𝑆, ℝ*, < ) ≤ 𝐵)
331, 2, 8, 17, 32eliccxrd 45536 1 (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wne 2933  wral 3052  wss 3931  c0 4313   class class class wbr 5124  (class class class)co 7410  infcinf 9458  *cxr 11273   < clt 11274  cle 11275  [,]cicc 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-icc 13374
This theorem is referenced by:  ovnf  46572
  Copyright terms: Public domain W3C validator