Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inficc Structured version   Visualization version   GIF version

Theorem inficc 45487
Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
inficc.a (𝜑𝐴 ∈ ℝ*)
inficc.b (𝜑𝐵 ∈ ℝ*)
inficc.s (𝜑𝑆 ⊆ (𝐴[,]𝐵))
inficc.n0 (𝜑𝑆 ≠ ∅)
Assertion
Ref Expression
inficc (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵))

Proof of Theorem inficc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inficc.a . 2 (𝜑𝐴 ∈ ℝ*)
2 inficc.b . 2 (𝜑𝐵 ∈ ℝ*)
3 inficc.s . . . 4 (𝜑𝑆 ⊆ (𝐴[,]𝐵))
4 iccssxr 13467 . . . . 5 (𝐴[,]𝐵) ⊆ ℝ*
54a1i 11 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ*)
63, 5sstrd 4006 . . 3 (𝜑𝑆 ⊆ ℝ*)
7 infxrcl 13372 . . 3 (𝑆 ⊆ ℝ* → inf(𝑆, ℝ*, < ) ∈ ℝ*)
86, 7syl 17 . 2 (𝜑 → inf(𝑆, ℝ*, < ) ∈ ℝ*)
91adantr 480 . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ*)
102adantr 480 . . . . 5 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ*)
113sselda 3995 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝐴[,]𝐵))
12 iccgelb 13440 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
139, 10, 11, 12syl3anc 1370 . . . 4 ((𝜑𝑥𝑆) → 𝐴𝑥)
1413ralrimiva 3144 . . 3 (𝜑 → ∀𝑥𝑆 𝐴𝑥)
15 infxrgelb 13374 . . . 4 ((𝑆 ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥𝑆 𝐴𝑥))
166, 1, 15syl2anc 584 . . 3 (𝜑 → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥𝑆 𝐴𝑥))
1714, 16mpbird 257 . 2 (𝜑𝐴 ≤ inf(𝑆, ℝ*, < ))
18 inficc.n0 . . . 4 (𝜑𝑆 ≠ ∅)
19 n0 4359 . . . 4 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
2018, 19sylib 218 . . 3 (𝜑 → ∃𝑥 𝑥𝑆)
218adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ∈ ℝ*)
224, 11sselid 3993 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ*)
236adantr 480 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑆 ⊆ ℝ*)
24 simpr 484 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥𝑆)
25 infxrlb 13373 . . . . . . 7 ((𝑆 ⊆ ℝ*𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥)
2623, 24, 25syl2anc 584 . . . . . 6 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥)
27 iccleub 13439 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
289, 10, 11, 27syl3anc 1370 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
2921, 22, 10, 26, 28xrletrd 13201 . . . . 5 ((𝜑𝑥𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝐵)
3029ex 412 . . . 4 (𝜑 → (𝑥𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵))
3130exlimdv 1931 . . 3 (𝜑 → (∃𝑥 𝑥𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵))
3220, 31mpd 15 . 2 (𝜑 → inf(𝑆, ℝ*, < ) ≤ 𝐵)
331, 2, 8, 17, 32eliccxrd 45480 1 (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1776  wcel 2106  wne 2938  wral 3059  wss 3963  c0 4339   class class class wbr 5148  (class class class)co 7431  infcinf 9479  *cxr 11292   < clt 11293  cle 11294  [,]cicc 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-icc 13391
This theorem is referenced by:  ovnf  46519
  Copyright terms: Public domain W3C validator