![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inficc | Structured version Visualization version GIF version |
Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
inficc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
inficc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
inficc.s | ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) |
inficc.n0 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
Ref | Expression |
---|---|
inficc | ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inficc.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | inficc.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | inficc.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) | |
4 | iccssxr 13410 | . . . . 5 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ*) |
6 | 3, 5 | sstrd 3987 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℝ*) |
7 | infxrcl 13315 | . . 3 ⊢ (𝑆 ⊆ ℝ* → inf(𝑆, ℝ*, < ) ∈ ℝ*) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ ℝ*) |
9 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ*) |
10 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ*) |
11 | 3 | sselda 3977 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (𝐴[,]𝐵)) |
12 | iccgelb 13383 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) | |
13 | 9, 10, 11, 12 | syl3anc 1368 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ≤ 𝑥) |
14 | 13 | ralrimiva 3140 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥) |
15 | infxrgelb 13317 | . . . 4 ⊢ ((𝑆 ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥)) | |
16 | 6, 1, 15 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐴 ≤ inf(𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑆 𝐴 ≤ 𝑥)) |
17 | 14, 16 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ≤ inf(𝑆, ℝ*, < )) |
18 | inficc.n0 | . . . 4 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
19 | n0 4341 | . . . 4 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑆) | |
20 | 18, 19 | sylib 217 | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝑆) |
21 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ∈ ℝ*) |
22 | 4, 11 | sselid 3975 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ*) |
23 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ℝ*) |
24 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
25 | infxrlb 13316 | . . . . . . 7 ⊢ ((𝑆 ⊆ ℝ* ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥) | |
26 | 23, 24, 25 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝑥) |
27 | iccleub 13382 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) | |
28 | 9, 10, 11, 27 | syl3anc 1368 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝐵) |
29 | 21, 22, 10, 26, 28 | xrletrd 13144 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → inf(𝑆, ℝ*, < ) ≤ 𝐵) |
30 | 29 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵)) |
31 | 30 | exlimdv 1928 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝑆 → inf(𝑆, ℝ*, < ) ≤ 𝐵)) |
32 | 20, 31 | mpd 15 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ≤ 𝐵) |
33 | 1, 2, 8, 17, 32 | eliccxrd 44793 | 1 ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1773 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ⊆ wss 3943 ∅c0 4317 class class class wbr 5141 (class class class)co 7404 infcinf 9435 ℝ*cxr 11248 < clt 11249 ≤ cle 11250 [,]cicc 13330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-icc 13334 |
This theorem is referenced by: ovnf 45832 |
Copyright terms: Public domain | W3C validator |