Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0p1 Structured version   Visualization version   GIF version

Theorem sge0p1 43006
 Description: The addition of the next term in a finite sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0p1.1 (𝜑𝑁 ∈ (ℤ𝑀))
sge0p1.2 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞))
sge0p1.3 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)
Assertion
Ref Expression
sge0p1 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sge0p1
StepHypRef Expression
1 sge0p1.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 fzsuc 12960 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
31, 2syl 17 . . . 4 (𝜑 → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
43mpteq1d 5142 . . 3 (𝜑 → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴) = (𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴))
54fveq2d 6667 . 2 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = (Σ^‘(𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴)))
6 nfv 1916 . . 3 𝑘𝜑
7 ovex 7184 . . . 4 (𝑀...𝑁) ∈ V
87a1i 11 . . 3 (𝜑 → (𝑀...𝑁) ∈ V)
9 snex 5320 . . . 4 {(𝑁 + 1)} ∈ V
109a1i 11 . . 3 (𝜑 → {(𝑁 + 1)} ∈ V)
11 fzp1disj 12972 . . . 4 ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
1211a1i 11 . . 3 (𝜑 → ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅)
13 0xr 10688 . . . . 5 0 ∈ ℝ*
1413a1i 11 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℝ*)
15 pnfxr 10695 . . . . 5 +∞ ∈ ℝ*
1615a1i 11 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → +∞ ∈ ℝ*)
17 iccssxr 12819 . . . . 5 (0[,]+∞) ⊆ ℝ*
18 simpl 486 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝜑)
19 fzelp1 12965 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
2019adantl 485 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
21 sge0p1.2 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞))
2218, 20, 21syl2anc 587 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ (0[,]+∞))
2317, 22sseldi 3951 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℝ*)
24 iccgelb 12792 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
2514, 16, 22, 24syl3anc 1368 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ 𝐴)
26 iccleub 12791 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 𝐴 ≤ +∞)
2714, 16, 22, 26syl3anc 1368 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ≤ +∞)
2814, 16, 23, 25, 27eliccxrd 42117 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ (0[,]+∞))
29 simpl 486 . . . 4 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝜑)
30 elsni 4567 . . . . . 6 (𝑘 ∈ {(𝑁 + 1)} → 𝑘 = (𝑁 + 1))
3130adantl 485 . . . . 5 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝑘 = (𝑁 + 1))
32 simpr 488 . . . . . 6 ((𝜑𝑘 = (𝑁 + 1)) → 𝑘 = (𝑁 + 1))
33 peano2uz 12300 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
34 eluzfz2 12921 . . . . . . . 8 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
351, 33, 343syl 18 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
3635adantr 484 . . . . . 6 ((𝜑𝑘 = (𝑁 + 1)) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
3732, 36eqeltrd 2916 . . . . 5 ((𝜑𝑘 = (𝑁 + 1)) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
3829, 31, 37syl2anc 587 . . . 4 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
3929, 38, 21syl2anc 587 . . 3 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝐴 ∈ (0[,]+∞))
406, 8, 10, 12, 28, 39sge0splitmpt 43003 . 2 (𝜑 → (Σ^‘(𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴))))
41 ovex 7184 . . . . 5 (𝑁 + 1) ∈ V
4241a1i 11 . . . 4 (𝜑 → (𝑁 + 1) ∈ V)
43 id 22 . . . . 5 (𝜑𝜑)
44 eleq1 2903 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))))
4544anbi2d 631 . . . . . . . 8 (𝑘 = (𝑁 + 1) → ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) ↔ (𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))))
46 sge0p1.3 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)
4746eleq1d 2900 . . . . . . . 8 (𝑘 = (𝑁 + 1) → (𝐴 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
4845, 47imbi12d 348 . . . . . . 7 (𝑘 = (𝑁 + 1) → (((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞))))
4948, 21vtoclg 3553 . . . . . 6 ((𝑁 + 1) ∈ V → ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞)))
5041, 49ax-mp 5 . . . . 5 ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞))
5143, 35, 50syl2anc 587 . . . 4 (𝜑𝐵 ∈ (0[,]+∞))
5242, 51, 46sge0snmpt 42975 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴)) = 𝐵)
5352oveq2d 7167 . 2 (𝜑 → ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴))) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
545, 40, 533eqtrd 2863 1 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  Vcvv 3480   ∪ cun 3917   ∩ cin 3918  ∅c0 4276  {csn 4550   class class class wbr 5053   ↦ cmpt 5133  ‘cfv 6345  (class class class)co 7151  0cc0 10537  1c1 10538   + caddc 10540  +∞cpnf 10672  ℝ*cxr 10674   ≤ cle 10676  ℤ≥cuz 12242   +𝑒 cxad 12504  [,]cicc 12740  ...cfz 12896  Σ^csumge0 42954 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-inf2 9103  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-xadd 12507  df-ico 12743  df-icc 12744  df-fz 12897  df-fzo 13040  df-seq 13376  df-exp 13437  df-hash 13698  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-sumge0 42955 This theorem is referenced by:  caratheodorylem1  43118
 Copyright terms: Public domain W3C validator