Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0p1 Structured version   Visualization version   GIF version

Theorem sge0p1 46335
Description: The addition of the next term in a finite sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0p1.1 (𝜑𝑁 ∈ (ℤ𝑀))
sge0p1.2 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞))
sge0p1.3 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)
Assertion
Ref Expression
sge0p1 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sge0p1
StepHypRef Expression
1 sge0p1.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 fzsuc 13631 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
31, 2syl 17 . . . 4 (𝜑 → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
43mpteq1d 5261 . . 3 (𝜑 → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴) = (𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴))
54fveq2d 6924 . 2 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = (Σ^‘(𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴)))
6 nfv 1913 . . 3 𝑘𝜑
7 ovex 7481 . . . 4 (𝑀...𝑁) ∈ V
87a1i 11 . . 3 (𝜑 → (𝑀...𝑁) ∈ V)
9 snex 5451 . . . 4 {(𝑁 + 1)} ∈ V
109a1i 11 . . 3 (𝜑 → {(𝑁 + 1)} ∈ V)
11 fzp1disj 13643 . . . 4 ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
1211a1i 11 . . 3 (𝜑 → ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅)
13 0xr 11337 . . . . 5 0 ∈ ℝ*
1413a1i 11 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℝ*)
15 pnfxr 11344 . . . . 5 +∞ ∈ ℝ*
1615a1i 11 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → +∞ ∈ ℝ*)
17 iccssxr 13490 . . . . 5 (0[,]+∞) ⊆ ℝ*
18 simpl 482 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝜑)
19 fzelp1 13636 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
2019adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
21 sge0p1.2 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞))
2218, 20, 21syl2anc 583 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ (0[,]+∞))
2317, 22sselid 4006 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℝ*)
24 iccgelb 13463 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
2514, 16, 22, 24syl3anc 1371 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ 𝐴)
26 iccleub 13462 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 𝐴 ≤ +∞)
2714, 16, 22, 26syl3anc 1371 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ≤ +∞)
2814, 16, 23, 25, 27eliccxrd 45445 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ (0[,]+∞))
29 simpl 482 . . . 4 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝜑)
30 elsni 4665 . . . . . 6 (𝑘 ∈ {(𝑁 + 1)} → 𝑘 = (𝑁 + 1))
3130adantl 481 . . . . 5 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝑘 = (𝑁 + 1))
32 simpr 484 . . . . . 6 ((𝜑𝑘 = (𝑁 + 1)) → 𝑘 = (𝑁 + 1))
33 peano2uz 12966 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
34 eluzfz2 13592 . . . . . . . 8 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
351, 33, 343syl 18 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
3635adantr 480 . . . . . 6 ((𝜑𝑘 = (𝑁 + 1)) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
3732, 36eqeltrd 2844 . . . . 5 ((𝜑𝑘 = (𝑁 + 1)) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
3829, 31, 37syl2anc 583 . . . 4 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
3929, 38, 21syl2anc 583 . . 3 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝐴 ∈ (0[,]+∞))
406, 8, 10, 12, 28, 39sge0splitmpt 46332 . 2 (𝜑 → (Σ^‘(𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴))))
41 ovex 7481 . . . . 5 (𝑁 + 1) ∈ V
4241a1i 11 . . . 4 (𝜑 → (𝑁 + 1) ∈ V)
43 id 22 . . . . 5 (𝜑𝜑)
44 eleq1 2832 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))))
4544anbi2d 629 . . . . . . . 8 (𝑘 = (𝑁 + 1) → ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) ↔ (𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))))
46 sge0p1.3 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)
4746eleq1d 2829 . . . . . . . 8 (𝑘 = (𝑁 + 1) → (𝐴 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
4845, 47imbi12d 344 . . . . . . 7 (𝑘 = (𝑁 + 1) → (((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞))))
4948, 21vtoclg 3566 . . . . . 6 ((𝑁 + 1) ∈ V → ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞)))
5041, 49ax-mp 5 . . . . 5 ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞))
5143, 35, 50syl2anc 583 . . . 4 (𝜑𝐵 ∈ (0[,]+∞))
5242, 51, 46sge0snmpt 46304 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴)) = 𝐵)
5352oveq2d 7464 . 2 (𝜑 → ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴))) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
545, 40, 533eqtrd 2784 1 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  c0 4352  {csn 4648   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323  cle 11325  cuz 12903   +𝑒 cxad 13173  [,]cicc 13410  ...cfz 13567  Σ^csumge0 46283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-sumge0 46284
This theorem is referenced by:  caratheodorylem1  46447
  Copyright terms: Public domain W3C validator