Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgsiga | Structured version Visualization version GIF version |
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
sgsiga.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
sgsiga | ⊢ (𝜑 → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgsiga.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sigagensiga 32158 | . 2 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) | |
3 | elrnsiga 32143 | . 2 ⊢ ((sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴) → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) | |
4 | 1, 2, 3 | 3syl 18 | 1 ⊢ (𝜑 → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∪ cuni 4844 ran crn 5601 ‘cfv 6458 sigAlgebracsiga 32125 sigaGencsigagen 32155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fv 6466 df-siga 32126 df-sigagen 32156 |
This theorem is referenced by: elsigagen2 32165 cldssbrsiga 32204 mbfmbfm 32274 imambfm 32278 sxbrsigalem2 32302 sxbrsiga 32306 sibf0 32350 sibff 32352 sibfinima 32355 sibfof 32356 sitgclg 32358 orvcval4 32476 orvcoel 32477 orvccel 32478 |
Copyright terms: Public domain | W3C validator |