Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgsiga Structured version   Visualization version   GIF version

Theorem sgsiga 34155
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypothesis
Ref Expression
sgsiga.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
sgsiga (𝜑 → (sigaGen‘𝐴) ∈ ran sigAlgebra)

Proof of Theorem sgsiga
StepHypRef Expression
1 sgsiga.1 . 2 (𝜑𝐴𝑉)
2 sigagensiga 34154 . 2 (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))
3 elrnsiga 34139 . 2 ((sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴) → (sigaGen‘𝐴) ∈ ran sigAlgebra)
41, 2, 33syl 18 1 (𝜑 → (sigaGen‘𝐴) ∈ ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   cuni 4856  ran crn 5615  cfv 6481  sigAlgebracsiga 34121  sigaGencsigagen 34151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-siga 34122  df-sigagen 34152
This theorem is referenced by:  elsigagen2  34161  cldssbrsiga  34200  imambfm  34275  sxbrsigalem2  34299  sxbrsiga  34303  sibf0  34347  sibff  34349  sibfinima  34352  sibfof  34353  sitgclg  34355  orvcval4  34474  orvcoel  34475  orvccel  34476
  Copyright terms: Public domain W3C validator