![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgsiga | Structured version Visualization version GIF version |
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
sgsiga.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
sgsiga | ⊢ (𝜑 → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgsiga.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sigagensiga 34122 | . 2 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) | |
3 | elrnsiga 34107 | . 2 ⊢ ((sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴) → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) | |
4 | 1, 2, 3 | 3syl 18 | 1 ⊢ (𝜑 → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∪ cuni 4912 ran crn 5690 ‘cfv 6563 sigAlgebracsiga 34089 sigaGencsigagen 34119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-siga 34090 df-sigagen 34120 |
This theorem is referenced by: elsigagen2 34129 cldssbrsiga 34168 imambfm 34244 sxbrsigalem2 34268 sxbrsiga 34272 sibf0 34316 sibff 34318 sibfinima 34321 sibfof 34322 sitgclg 34324 orvcval4 34442 orvcoel 34443 orvccel 34444 |
Copyright terms: Public domain | W3C validator |