Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgsiga | Structured version Visualization version GIF version |
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
sgsiga.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
sgsiga | ⊢ (𝜑 → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgsiga.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sigagensiga 32088 | . 2 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) | |
3 | elrnsiga 32073 | . 2 ⊢ ((sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴) → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) | |
4 | 1, 2, 3 | 3syl 18 | 1 ⊢ (𝜑 → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 ∪ cuni 4844 ran crn 5589 ‘cfv 6430 sigAlgebracsiga 32055 sigaGencsigagen 32085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fv 6438 df-siga 32056 df-sigagen 32086 |
This theorem is referenced by: elsigagen2 32095 cldssbrsiga 32134 mbfmbfm 32204 imambfm 32208 sxbrsigalem2 32232 sxbrsiga 32236 sibf0 32280 sibff 32282 sibfinima 32285 sibfof 32286 sitgclg 32288 orvcval4 32406 orvcoel 32407 orvccel 32408 |
Copyright terms: Public domain | W3C validator |