Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgsiga Structured version   Visualization version   GIF version

Theorem sgsiga 30803
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypothesis
Ref Expression
sgsiga.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
sgsiga (𝜑 → (sigaGen‘𝐴) ∈ ran sigAlgebra)

Proof of Theorem sgsiga
StepHypRef Expression
1 sgsiga.1 . 2 (𝜑𝐴𝑉)
2 sigagensiga 30802 . 2 (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))
3 elrnsiga 30787 . 2 ((sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴) → (sigaGen‘𝐴) ∈ ran sigAlgebra)
41, 2, 33syl 18 1 (𝜑 → (sigaGen‘𝐴) ∈ ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   cuni 4671  ran crn 5356  cfv 6135  sigAlgebracsiga 30768  sigaGencsigagen 30799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-int 4711  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-iota 6099  df-fun 6137  df-fv 6143  df-siga 30769  df-sigagen 30800
This theorem is referenced by:  elsigagen2  30809  cldssbrsiga  30848  mbfmbfm  30918  imambfm  30922  sxbrsigalem2  30946  sxbrsiga  30950  sibf0  30994  sibff  30996  sibfinima  30999  sibfof  31000  sitgclg  31002  orvcval4  31121  orvcoel  31122  orvccel  31123
  Copyright terms: Public domain W3C validator