Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnmbfm | Structured version Visualization version GIF version |
Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
Ref | Expression |
---|---|
cnmbfm.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
cnmbfm.2 | ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) |
cnmbfm.3 | ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) |
Ref | Expression |
---|---|
cnmbfm | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmbfm.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
4 | 2, 3 | cnf 22395 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:∪ 𝐽⟶∪ 𝐾) |
6 | cnmbfm.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) | |
7 | 6 | unieqd 4859 | . . . . 5 ⊢ (𝜑 → ∪ 𝑆 = ∪ (sigaGen‘𝐽)) |
8 | cntop1 22389 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
9 | unisg 32107 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
10 | 1, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
11 | 7, 10 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
12 | cnmbfm.3 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) | |
13 | 12 | unieqd 4859 | . . . . 5 ⊢ (𝜑 → ∪ 𝑇 = ∪ (sigaGen‘𝐾)) |
14 | cntop2 22390 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
15 | unisg 32107 | . . . . . 6 ⊢ (𝐾 ∈ Top → ∪ (sigaGen‘𝐾) = ∪ 𝐾) | |
16 | 1, 14, 15 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∪ (sigaGen‘𝐾) = ∪ 𝐾) |
17 | 13, 16 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → ∪ 𝑇 = ∪ 𝐾) |
18 | 11, 17 | feq23d 6593 | . . 3 ⊢ (𝜑 → (𝐹:∪ 𝑆⟶∪ 𝑇 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
19 | 5, 18 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
20 | sssigagen 32109 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽)) | |
21 | 1, 8, 20 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐽 ⊆ (sigaGen‘𝐽)) |
22 | 21, 6 | sseqtrrd 3967 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ 𝑆) |
23 | 22 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → 𝐽 ⊆ 𝑆) |
24 | cnima 22414 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝐽) | |
25 | 1, 24 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝐽) |
26 | 23, 25 | sseldd 3927 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝑆) |
27 | 26 | ralrimiva 3110 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆) |
28 | elex 3449 | . . . 4 ⊢ (𝐾 ∈ Top → 𝐾 ∈ V) | |
29 | 1, 14, 28 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐾 ∈ V) |
30 | sigagensiga 32105 | . . . . . 6 ⊢ (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) | |
31 | 1, 8, 30 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) |
32 | 6, 31 | eqeltrd 2841 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (sigAlgebra‘∪ 𝐽)) |
33 | elrnsiga 32090 | . . . 4 ⊢ (𝑆 ∈ (sigAlgebra‘∪ 𝐽) → 𝑆 ∈ ∪ ran sigAlgebra) | |
34 | 32, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
35 | 29, 34, 12 | imambfm 32225 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹:∪ 𝑆⟶∪ 𝑇 ∧ ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆))) |
36 | 19, 27, 35 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 ⊆ wss 3892 ∪ cuni 4845 ◡ccnv 5589 ran crn 5591 “ cima 5593 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 Topctop 22040 Cn ccn 22373 sigAlgebracsiga 32072 sigaGencsigagen 32102 MblFnMcmbfm 32213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-ac2 10220 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-oi 9247 df-dju 9660 df-card 9698 df-acn 9701 df-ac 9873 df-top 22041 df-topon 22058 df-cn 22376 df-siga 32073 df-sigagen 32103 df-mbfm 32214 |
This theorem is referenced by: sxbrsiga 32253 rrvadd 32415 rrvmulc 32416 |
Copyright terms: Public domain | W3C validator |