Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnmbfm Structured version   Visualization version   GIF version

Theorem cnmbfm 32226
Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
cnmbfm.1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cnmbfm.2 (𝜑𝑆 = (sigaGen‘𝐽))
cnmbfm.3 (𝜑𝑇 = (sigaGen‘𝐾))
Assertion
Ref Expression
cnmbfm (𝜑𝐹 ∈ (𝑆MblFnM𝑇))

Proof of Theorem cnmbfm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 cnmbfm.1 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 eqid 2740 . . . . 5 𝐽 = 𝐽
3 eqid 2740 . . . . 5 𝐾 = 𝐾
42, 3cnf 22395 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
51, 4syl 17 . . 3 (𝜑𝐹: 𝐽 𝐾)
6 cnmbfm.2 . . . . . 6 (𝜑𝑆 = (sigaGen‘𝐽))
76unieqd 4859 . . . . 5 (𝜑 𝑆 = (sigaGen‘𝐽))
8 cntop1 22389 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
9 unisg 32107 . . . . . 6 (𝐽 ∈ Top → (sigaGen‘𝐽) = 𝐽)
101, 8, 93syl 18 . . . . 5 (𝜑 (sigaGen‘𝐽) = 𝐽)
117, 10eqtrd 2780 . . . 4 (𝜑 𝑆 = 𝐽)
12 cnmbfm.3 . . . . . 6 (𝜑𝑇 = (sigaGen‘𝐾))
1312unieqd 4859 . . . . 5 (𝜑 𝑇 = (sigaGen‘𝐾))
14 cntop2 22390 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
15 unisg 32107 . . . . . 6 (𝐾 ∈ Top → (sigaGen‘𝐾) = 𝐾)
161, 14, 153syl 18 . . . . 5 (𝜑 (sigaGen‘𝐾) = 𝐾)
1713, 16eqtrd 2780 . . . 4 (𝜑 𝑇 = 𝐾)
1811, 17feq23d 6593 . . 3 (𝜑 → (𝐹: 𝑆 𝑇𝐹: 𝐽 𝐾))
195, 18mpbird 256 . 2 (𝜑𝐹: 𝑆 𝑇)
20 sssigagen 32109 . . . . . . 7 (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽))
211, 8, 203syl 18 . . . . . 6 (𝜑𝐽 ⊆ (sigaGen‘𝐽))
2221, 6sseqtrrd 3967 . . . . 5 (𝜑𝐽𝑆)
2322adantr 481 . . . 4 ((𝜑𝑎𝐾) → 𝐽𝑆)
24 cnima 22414 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
251, 24sylan 580 . . . 4 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
2623, 25sseldd 3927 . . 3 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝑆)
2726ralrimiva 3110 . 2 (𝜑 → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)
28 elex 3449 . . . 4 (𝐾 ∈ Top → 𝐾 ∈ V)
291, 14, 283syl 18 . . 3 (𝜑𝐾 ∈ V)
30 sigagensiga 32105 . . . . . 6 (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽))
311, 8, 303syl 18 . . . . 5 (𝜑 → (sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽))
326, 31eqeltrd 2841 . . . 4 (𝜑𝑆 ∈ (sigAlgebra‘ 𝐽))
33 elrnsiga 32090 . . . 4 (𝑆 ∈ (sigAlgebra‘ 𝐽) → 𝑆 ran sigAlgebra)
3432, 33syl 17 . . 3 (𝜑𝑆 ran sigAlgebra)
3529, 34, 12imambfm 32225 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
3619, 27, 35mpbir2and 710 1 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  wss 3892   cuni 4845  ccnv 5589  ran crn 5591  cima 5593  wf 6428  cfv 6432  (class class class)co 7271  Topctop 22040   Cn ccn 22373  sigAlgebracsiga 32072  sigaGencsigagen 32102  MblFnMcmbfm 32213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-ac2 10220
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-oi 9247  df-dju 9660  df-card 9698  df-acn 9701  df-ac 9873  df-top 22041  df-topon 22058  df-cn 22376  df-siga 32073  df-sigagen 32103  df-mbfm 32214
This theorem is referenced by:  sxbrsiga  32253  rrvadd  32415  rrvmulc  32416
  Copyright terms: Public domain W3C validator