Step | Hyp | Ref
| Expression |
1 | | cnmbfm.1 |
. . . 4
β’ (π β πΉ β (π½ Cn πΎ)) |
2 | | eqid 2732 |
. . . . 5
β’ βͺ π½ =
βͺ π½ |
3 | | eqid 2732 |
. . . . 5
β’ βͺ πΎ =
βͺ πΎ |
4 | 2, 3 | cnf 22970 |
. . . 4
β’ (πΉ β (π½ Cn πΎ) β πΉ:βͺ π½βΆβͺ πΎ) |
5 | 1, 4 | syl 17 |
. . 3
β’ (π β πΉ:βͺ π½βΆβͺ πΎ) |
6 | | cnmbfm.2 |
. . . . . 6
β’ (π β π = (sigaGenβπ½)) |
7 | 6 | unieqd 4922 |
. . . . 5
β’ (π β βͺ π =
βͺ (sigaGenβπ½)) |
8 | | cntop1 22964 |
. . . . . 6
β’ (πΉ β (π½ Cn πΎ) β π½ β Top) |
9 | | unisg 33427 |
. . . . . 6
β’ (π½ β Top β βͺ (sigaGenβπ½) = βͺ π½) |
10 | 1, 8, 9 | 3syl 18 |
. . . . 5
β’ (π β βͺ (sigaGenβπ½) = βͺ π½) |
11 | 7, 10 | eqtrd 2772 |
. . . 4
β’ (π β βͺ π =
βͺ π½) |
12 | | cnmbfm.3 |
. . . . . 6
β’ (π β π = (sigaGenβπΎ)) |
13 | 12 | unieqd 4922 |
. . . . 5
β’ (π β βͺ π =
βͺ (sigaGenβπΎ)) |
14 | | cntop2 22965 |
. . . . . 6
β’ (πΉ β (π½ Cn πΎ) β πΎ β Top) |
15 | | unisg 33427 |
. . . . . 6
β’ (πΎ β Top β βͺ (sigaGenβπΎ) = βͺ πΎ) |
16 | 1, 14, 15 | 3syl 18 |
. . . . 5
β’ (π β βͺ (sigaGenβπΎ) = βͺ πΎ) |
17 | 13, 16 | eqtrd 2772 |
. . . 4
β’ (π β βͺ π =
βͺ πΎ) |
18 | 11, 17 | feq23d 6712 |
. . 3
β’ (π β (πΉ:βͺ πβΆβͺ π
β πΉ:βͺ π½βΆβͺ πΎ)) |
19 | 5, 18 | mpbird 256 |
. 2
β’ (π β πΉ:βͺ πβΆβͺ π) |
20 | | sssigagen 33429 |
. . . . . . 7
β’ (π½ β Top β π½ β (sigaGenβπ½)) |
21 | 1, 8, 20 | 3syl 18 |
. . . . . 6
β’ (π β π½ β (sigaGenβπ½)) |
22 | 21, 6 | sseqtrrd 4023 |
. . . . 5
β’ (π β π½ β π) |
23 | 22 | adantr 481 |
. . . 4
β’ ((π β§ π β πΎ) β π½ β π) |
24 | | cnima 22989 |
. . . . 5
β’ ((πΉ β (π½ Cn πΎ) β§ π β πΎ) β (β‘πΉ β π) β π½) |
25 | 1, 24 | sylan 580 |
. . . 4
β’ ((π β§ π β πΎ) β (β‘πΉ β π) β π½) |
26 | 23, 25 | sseldd 3983 |
. . 3
β’ ((π β§ π β πΎ) β (β‘πΉ β π) β π) |
27 | 26 | ralrimiva 3146 |
. 2
β’ (π β βπ β πΎ (β‘πΉ β π) β π) |
28 | | elex 3492 |
. . . 4
β’ (πΎ β Top β πΎ β V) |
29 | 1, 14, 28 | 3syl 18 |
. . 3
β’ (π β πΎ β V) |
30 | | sigagensiga 33425 |
. . . . . 6
β’ (π½ β Top β
(sigaGenβπ½) β
(sigAlgebraββͺ π½)) |
31 | 1, 8, 30 | 3syl 18 |
. . . . 5
β’ (π β (sigaGenβπ½) β (sigAlgebraββͺ π½)) |
32 | 6, 31 | eqeltrd 2833 |
. . . 4
β’ (π β π β (sigAlgebraββͺ π½)) |
33 | | elrnsiga 33410 |
. . . 4
β’ (π β (sigAlgebraββͺ π½)
β π β βͺ ran sigAlgebra) |
34 | 32, 33 | syl 17 |
. . 3
β’ (π β π β βͺ ran
sigAlgebra) |
35 | 29, 34, 12 | imambfm 33547 |
. 2
β’ (π β (πΉ β (πMblFnMπ) β (πΉ:βͺ πβΆβͺ π
β§ βπ β
πΎ (β‘πΉ β π) β π))) |
36 | 19, 27, 35 | mpbir2and 711 |
1
β’ (π β πΉ β (πMblFnMπ)) |