Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnmbfm Structured version   Visualization version   GIF version

Theorem cnmbfm 34249
Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
cnmbfm.1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cnmbfm.2 (𝜑𝑆 = (sigaGen‘𝐽))
cnmbfm.3 (𝜑𝑇 = (sigaGen‘𝐾))
Assertion
Ref Expression
cnmbfm (𝜑𝐹 ∈ (𝑆MblFnM𝑇))

Proof of Theorem cnmbfm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 cnmbfm.1 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 eqid 2729 . . . . 5 𝐽 = 𝐽
3 eqid 2729 . . . . 5 𝐾 = 𝐾
42, 3cnf 23168 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
51, 4syl 17 . . 3 (𝜑𝐹: 𝐽 𝐾)
6 cnmbfm.2 . . . . . 6 (𝜑𝑆 = (sigaGen‘𝐽))
76unieqd 4880 . . . . 5 (𝜑 𝑆 = (sigaGen‘𝐽))
8 cntop1 23162 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
9 unisg 34128 . . . . . 6 (𝐽 ∈ Top → (sigaGen‘𝐽) = 𝐽)
101, 8, 93syl 18 . . . . 5 (𝜑 (sigaGen‘𝐽) = 𝐽)
117, 10eqtrd 2764 . . . 4 (𝜑 𝑆 = 𝐽)
12 cnmbfm.3 . . . . . 6 (𝜑𝑇 = (sigaGen‘𝐾))
1312unieqd 4880 . . . . 5 (𝜑 𝑇 = (sigaGen‘𝐾))
14 cntop2 23163 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
15 unisg 34128 . . . . . 6 (𝐾 ∈ Top → (sigaGen‘𝐾) = 𝐾)
161, 14, 153syl 18 . . . . 5 (𝜑 (sigaGen‘𝐾) = 𝐾)
1713, 16eqtrd 2764 . . . 4 (𝜑 𝑇 = 𝐾)
1811, 17feq23d 6666 . . 3 (𝜑 → (𝐹: 𝑆 𝑇𝐹: 𝐽 𝐾))
195, 18mpbird 257 . 2 (𝜑𝐹: 𝑆 𝑇)
20 sssigagen 34130 . . . . . . 7 (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽))
211, 8, 203syl 18 . . . . . 6 (𝜑𝐽 ⊆ (sigaGen‘𝐽))
2221, 6sseqtrrd 3981 . . . . 5 (𝜑𝐽𝑆)
2322adantr 480 . . . 4 ((𝜑𝑎𝐾) → 𝐽𝑆)
24 cnima 23187 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
251, 24sylan 580 . . . 4 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
2623, 25sseldd 3944 . . 3 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝑆)
2726ralrimiva 3125 . 2 (𝜑 → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)
28 elex 3465 . . . 4 (𝐾 ∈ Top → 𝐾 ∈ V)
291, 14, 283syl 18 . . 3 (𝜑𝐾 ∈ V)
30 sigagensiga 34126 . . . . . 6 (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽))
311, 8, 303syl 18 . . . . 5 (𝜑 → (sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽))
326, 31eqeltrd 2828 . . . 4 (𝜑𝑆 ∈ (sigAlgebra‘ 𝐽))
33 elrnsiga 34111 . . . 4 (𝑆 ∈ (sigAlgebra‘ 𝐽) → 𝑆 ran sigAlgebra)
3432, 33syl 17 . . 3 (𝜑𝑆 ran sigAlgebra)
3529, 34, 12imambfm 34248 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
3619, 27, 35mpbir2and 713 1 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911   cuni 4867  ccnv 5630  ran crn 5632  cima 5634  wf 6496  cfv 6500  (class class class)co 7370  Topctop 22815   Cn ccn 23146  sigAlgebracsiga 34093  sigaGencsigagen 34123  MblFnMcmbfm 34234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-inf2 9573  ax-ac2 10395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8649  df-map 8779  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-oi 9440  df-dju 9833  df-card 9871  df-acn 9874  df-ac 10048  df-top 22816  df-topon 22833  df-cn 23149  df-siga 34094  df-sigagen 34124  df-mbfm 34235
This theorem is referenced by:  sxbrsiga  34276  rrvadd  34438  rrvmulc  34439
  Copyright terms: Public domain W3C validator