| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnmbfm | Structured version Visualization version GIF version | ||
| Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
| Ref | Expression |
|---|---|
| cnmbfm.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| cnmbfm.2 | ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) |
| cnmbfm.3 | ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) |
| Ref | Expression |
|---|---|
| cnmbfm | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmbfm.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 4 | 2, 3 | cnf 23166 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 6 | cnmbfm.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) | |
| 7 | 6 | unieqd 4880 | . . . . 5 ⊢ (𝜑 → ∪ 𝑆 = ∪ (sigaGen‘𝐽)) |
| 8 | cntop1 23160 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 9 | unisg 34126 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
| 10 | 1, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
| 11 | 7, 10 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
| 12 | cnmbfm.3 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) | |
| 13 | 12 | unieqd 4880 | . . . . 5 ⊢ (𝜑 → ∪ 𝑇 = ∪ (sigaGen‘𝐾)) |
| 14 | cntop2 23161 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 15 | unisg 34126 | . . . . . 6 ⊢ (𝐾 ∈ Top → ∪ (sigaGen‘𝐾) = ∪ 𝐾) | |
| 16 | 1, 14, 15 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∪ (sigaGen‘𝐾) = ∪ 𝐾) |
| 17 | 13, 16 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ∪ 𝑇 = ∪ 𝐾) |
| 18 | 11, 17 | feq23d 6665 | . . 3 ⊢ (𝜑 → (𝐹:∪ 𝑆⟶∪ 𝑇 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
| 19 | 5, 18 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
| 20 | sssigagen 34128 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽)) | |
| 21 | 1, 8, 20 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐽 ⊆ (sigaGen‘𝐽)) |
| 22 | 21, 6 | sseqtrrd 3981 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ 𝑆) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → 𝐽 ⊆ 𝑆) |
| 24 | cnima 23185 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝐽) | |
| 25 | 1, 24 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝐽) |
| 26 | 23, 25 | sseldd 3944 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝑆) |
| 27 | 26 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆) |
| 28 | elex 3465 | . . . 4 ⊢ (𝐾 ∈ Top → 𝐾 ∈ V) | |
| 29 | 1, 14, 28 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐾 ∈ V) |
| 30 | sigagensiga 34124 | . . . . . 6 ⊢ (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) | |
| 31 | 1, 8, 30 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) |
| 32 | 6, 31 | eqeltrd 2828 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (sigAlgebra‘∪ 𝐽)) |
| 33 | elrnsiga 34109 | . . . 4 ⊢ (𝑆 ∈ (sigAlgebra‘∪ 𝐽) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 34 | 32, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 35 | 29, 34, 12 | imambfm 34246 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹:∪ 𝑆⟶∪ 𝑇 ∧ ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆))) |
| 36 | 19, 27, 35 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 ∪ cuni 4867 ◡ccnv 5630 ran crn 5632 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Topctop 22813 Cn ccn 23144 sigAlgebracsiga 34091 sigaGencsigagen 34121 MblFnMcmbfm 34232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-dju 9830 df-card 9868 df-acn 9871 df-ac 10045 df-top 22814 df-topon 22831 df-cn 23147 df-siga 34092 df-sigagen 34122 df-mbfm 34233 |
| This theorem is referenced by: sxbrsiga 34274 rrvadd 34436 rrvmulc 34437 |
| Copyright terms: Public domain | W3C validator |