| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnmbfm | Structured version Visualization version GIF version | ||
| Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
| Ref | Expression |
|---|---|
| cnmbfm.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| cnmbfm.2 | ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) |
| cnmbfm.3 | ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) |
| Ref | Expression |
|---|---|
| cnmbfm | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmbfm.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 4 | 2, 3 | cnf 23115 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 6 | cnmbfm.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) | |
| 7 | 6 | unieqd 4869 | . . . . 5 ⊢ (𝜑 → ∪ 𝑆 = ∪ (sigaGen‘𝐽)) |
| 8 | cntop1 23109 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 9 | unisg 34124 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
| 10 | 1, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
| 11 | 7, 10 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
| 12 | cnmbfm.3 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) | |
| 13 | 12 | unieqd 4869 | . . . . 5 ⊢ (𝜑 → ∪ 𝑇 = ∪ (sigaGen‘𝐾)) |
| 14 | cntop2 23110 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 15 | unisg 34124 | . . . . . 6 ⊢ (𝐾 ∈ Top → ∪ (sigaGen‘𝐾) = ∪ 𝐾) | |
| 16 | 1, 14, 15 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∪ (sigaGen‘𝐾) = ∪ 𝐾) |
| 17 | 13, 16 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ∪ 𝑇 = ∪ 𝐾) |
| 18 | 11, 17 | feq23d 6641 | . . 3 ⊢ (𝜑 → (𝐹:∪ 𝑆⟶∪ 𝑇 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
| 19 | 5, 18 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
| 20 | sssigagen 34126 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽)) | |
| 21 | 1, 8, 20 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐽 ⊆ (sigaGen‘𝐽)) |
| 22 | 21, 6 | sseqtrrd 3969 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ 𝑆) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → 𝐽 ⊆ 𝑆) |
| 24 | cnima 23134 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝐽) | |
| 25 | 1, 24 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝐽) |
| 26 | 23, 25 | sseldd 3932 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝑆) |
| 27 | 26 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆) |
| 28 | elex 3454 | . . . 4 ⊢ (𝐾 ∈ Top → 𝐾 ∈ V) | |
| 29 | 1, 14, 28 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐾 ∈ V) |
| 30 | sigagensiga 34122 | . . . . . 6 ⊢ (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) | |
| 31 | 1, 8, 30 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) |
| 32 | 6, 31 | eqeltrd 2828 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (sigAlgebra‘∪ 𝐽)) |
| 33 | elrnsiga 34107 | . . . 4 ⊢ (𝑆 ∈ (sigAlgebra‘∪ 𝐽) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 34 | 32, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 35 | 29, 34, 12 | imambfm 34243 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹:∪ 𝑆⟶∪ 𝑇 ∧ ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆))) |
| 36 | 19, 27, 35 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3433 ⊆ wss 3899 ∪ cuni 4856 ◡ccnv 5612 ran crn 5614 “ cima 5616 ⟶wf 6472 ‘cfv 6476 (class class class)co 7340 Topctop 22762 Cn ccn 23093 sigAlgebracsiga 34089 sigaGencsigagen 34119 MblFnMcmbfm 34230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-inf2 9525 ax-ac2 10345 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-iin 4941 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-se 5567 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-om 7791 df-1st 7915 df-2nd 7916 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-2o 8380 df-er 8616 df-map 8746 df-en 8864 df-dom 8865 df-sdom 8866 df-fin 8867 df-oi 9390 df-dju 9785 df-card 9823 df-acn 9826 df-ac 9998 df-top 22763 df-topon 22780 df-cn 23096 df-siga 34090 df-sigagen 34120 df-mbfm 34231 |
| This theorem is referenced by: sxbrsiga 34271 rrvadd 34433 rrvmulc 34434 |
| Copyright terms: Public domain | W3C validator |