Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnmbfm Structured version   Visualization version   GIF version

Theorem cnmbfm 30866
Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
cnmbfm.1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cnmbfm.2 (𝜑𝑆 = (sigaGen‘𝐽))
cnmbfm.3 (𝜑𝑇 = (sigaGen‘𝐾))
Assertion
Ref Expression
cnmbfm (𝜑𝐹 ∈ (𝑆MblFnM𝑇))

Proof of Theorem cnmbfm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 cnmbfm.1 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 eqid 2825 . . . . 5 𝐽 = 𝐽
3 eqid 2825 . . . . 5 𝐾 = 𝐾
42, 3cnf 21428 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
51, 4syl 17 . . 3 (𝜑𝐹: 𝐽 𝐾)
6 cnmbfm.2 . . . . . 6 (𝜑𝑆 = (sigaGen‘𝐽))
76unieqd 4670 . . . . 5 (𝜑 𝑆 = (sigaGen‘𝐽))
8 cntop1 21422 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
9 unisg 30747 . . . . . 6 (𝐽 ∈ Top → (sigaGen‘𝐽) = 𝐽)
101, 8, 93syl 18 . . . . 5 (𝜑 (sigaGen‘𝐽) = 𝐽)
117, 10eqtrd 2861 . . . 4 (𝜑 𝑆 = 𝐽)
12 cnmbfm.3 . . . . . 6 (𝜑𝑇 = (sigaGen‘𝐾))
1312unieqd 4670 . . . . 5 (𝜑 𝑇 = (sigaGen‘𝐾))
14 cntop2 21423 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
15 unisg 30747 . . . . . 6 (𝐾 ∈ Top → (sigaGen‘𝐾) = 𝐾)
161, 14, 153syl 18 . . . . 5 (𝜑 (sigaGen‘𝐾) = 𝐾)
1713, 16eqtrd 2861 . . . 4 (𝜑 𝑇 = 𝐾)
1811, 17feq23d 6277 . . 3 (𝜑 → (𝐹: 𝑆 𝑇𝐹: 𝐽 𝐾))
195, 18mpbird 249 . 2 (𝜑𝐹: 𝑆 𝑇)
20 sssigagen 30749 . . . . . . 7 (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽))
211, 8, 203syl 18 . . . . . 6 (𝜑𝐽 ⊆ (sigaGen‘𝐽))
2221, 6sseqtr4d 3867 . . . . 5 (𝜑𝐽𝑆)
2322adantr 474 . . . 4 ((𝜑𝑎𝐾) → 𝐽𝑆)
24 cnima 21447 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
251, 24sylan 575 . . . 4 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
2623, 25sseldd 3828 . . 3 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝑆)
2726ralrimiva 3175 . 2 (𝜑 → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)
28 elex 3429 . . . 4 (𝐾 ∈ Top → 𝐾 ∈ V)
291, 14, 283syl 18 . . 3 (𝜑𝐾 ∈ V)
30 sigagensiga 30745 . . . . . 6 (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽))
311, 8, 303syl 18 . . . . 5 (𝜑 → (sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽))
326, 31eqeltrd 2906 . . . 4 (𝜑𝑆 ∈ (sigAlgebra‘ 𝐽))
33 elrnsiga 30730 . . . 4 (𝑆 ∈ (sigAlgebra‘ 𝐽) → 𝑆 ran sigAlgebra)
3432, 33syl 17 . . 3 (𝜑𝑆 ran sigAlgebra)
3529, 34, 12imambfm 30865 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
3619, 27, 35mpbir2and 704 1 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  wss 3798   cuni 4660  ccnv 5345  ran crn 5347  cima 5349  wf 6123  cfv 6127  (class class class)co 6910  Topctop 21075   Cn ccn 21406  sigAlgebracsiga 30711  sigaGencsigagen 30742  MblFnMcmbfm 30853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-ac2 9607
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-oi 8691  df-card 9085  df-acn 9088  df-ac 9259  df-cda 9312  df-top 21076  df-topon 21093  df-cn 21409  df-siga 30712  df-sigagen 30743  df-mbfm 30854
This theorem is referenced by:  sxbrsiga  30893  rrvadd  31056  rrvmulc  31057
  Copyright terms: Public domain W3C validator