Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnmbfm Structured version   Visualization version   GIF version

Theorem cnmbfm 32130
Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
cnmbfm.1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cnmbfm.2 (𝜑𝑆 = (sigaGen‘𝐽))
cnmbfm.3 (𝜑𝑇 = (sigaGen‘𝐾))
Assertion
Ref Expression
cnmbfm (𝜑𝐹 ∈ (𝑆MblFnM𝑇))

Proof of Theorem cnmbfm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 cnmbfm.1 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 eqid 2738 . . . . 5 𝐽 = 𝐽
3 eqid 2738 . . . . 5 𝐾 = 𝐾
42, 3cnf 22305 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
51, 4syl 17 . . 3 (𝜑𝐹: 𝐽 𝐾)
6 cnmbfm.2 . . . . . 6 (𝜑𝑆 = (sigaGen‘𝐽))
76unieqd 4850 . . . . 5 (𝜑 𝑆 = (sigaGen‘𝐽))
8 cntop1 22299 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
9 unisg 32011 . . . . . 6 (𝐽 ∈ Top → (sigaGen‘𝐽) = 𝐽)
101, 8, 93syl 18 . . . . 5 (𝜑 (sigaGen‘𝐽) = 𝐽)
117, 10eqtrd 2778 . . . 4 (𝜑 𝑆 = 𝐽)
12 cnmbfm.3 . . . . . 6 (𝜑𝑇 = (sigaGen‘𝐾))
1312unieqd 4850 . . . . 5 (𝜑 𝑇 = (sigaGen‘𝐾))
14 cntop2 22300 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
15 unisg 32011 . . . . . 6 (𝐾 ∈ Top → (sigaGen‘𝐾) = 𝐾)
161, 14, 153syl 18 . . . . 5 (𝜑 (sigaGen‘𝐾) = 𝐾)
1713, 16eqtrd 2778 . . . 4 (𝜑 𝑇 = 𝐾)
1811, 17feq23d 6579 . . 3 (𝜑 → (𝐹: 𝑆 𝑇𝐹: 𝐽 𝐾))
195, 18mpbird 256 . 2 (𝜑𝐹: 𝑆 𝑇)
20 sssigagen 32013 . . . . . . 7 (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽))
211, 8, 203syl 18 . . . . . 6 (𝜑𝐽 ⊆ (sigaGen‘𝐽))
2221, 6sseqtrrd 3958 . . . . 5 (𝜑𝐽𝑆)
2322adantr 480 . . . 4 ((𝜑𝑎𝐾) → 𝐽𝑆)
24 cnima 22324 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
251, 24sylan 579 . . . 4 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
2623, 25sseldd 3918 . . 3 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝑆)
2726ralrimiva 3107 . 2 (𝜑 → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)
28 elex 3440 . . . 4 (𝐾 ∈ Top → 𝐾 ∈ V)
291, 14, 283syl 18 . . 3 (𝜑𝐾 ∈ V)
30 sigagensiga 32009 . . . . . 6 (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽))
311, 8, 303syl 18 . . . . 5 (𝜑 → (sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽))
326, 31eqeltrd 2839 . . . 4 (𝜑𝑆 ∈ (sigAlgebra‘ 𝐽))
33 elrnsiga 31994 . . . 4 (𝑆 ∈ (sigAlgebra‘ 𝐽) → 𝑆 ran sigAlgebra)
3432, 33syl 17 . . 3 (𝜑𝑆 ran sigAlgebra)
3529, 34, 12imambfm 32129 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
3619, 27, 35mpbir2and 709 1 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883   cuni 4836  ccnv 5579  ran crn 5581  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  Topctop 21950   Cn ccn 22283  sigAlgebracsiga 31976  sigaGencsigagen 32006  MblFnMcmbfm 32117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-ac 9803  df-top 21951  df-topon 21968  df-cn 22286  df-siga 31977  df-sigagen 32007  df-mbfm 32118
This theorem is referenced by:  sxbrsiga  32157  rrvadd  32319  rrvmulc  32320
  Copyright terms: Public domain W3C validator