| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnmbfm | Structured version Visualization version GIF version | ||
| Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
| Ref | Expression |
|---|---|
| cnmbfm.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| cnmbfm.2 | ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) |
| cnmbfm.3 | ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) |
| Ref | Expression |
|---|---|
| cnmbfm | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmbfm.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 4 | 2, 3 | cnf 23167 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 6 | cnmbfm.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) | |
| 7 | 6 | unieqd 4871 | . . . . 5 ⊢ (𝜑 → ∪ 𝑆 = ∪ (sigaGen‘𝐽)) |
| 8 | cntop1 23161 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 9 | unisg 34163 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
| 10 | 1, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
| 11 | 7, 10 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
| 12 | cnmbfm.3 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) | |
| 13 | 12 | unieqd 4871 | . . . . 5 ⊢ (𝜑 → ∪ 𝑇 = ∪ (sigaGen‘𝐾)) |
| 14 | cntop2 23162 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 15 | unisg 34163 | . . . . . 6 ⊢ (𝐾 ∈ Top → ∪ (sigaGen‘𝐾) = ∪ 𝐾) | |
| 16 | 1, 14, 15 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∪ (sigaGen‘𝐾) = ∪ 𝐾) |
| 17 | 13, 16 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → ∪ 𝑇 = ∪ 𝐾) |
| 18 | 11, 17 | feq23d 6652 | . . 3 ⊢ (𝜑 → (𝐹:∪ 𝑆⟶∪ 𝑇 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
| 19 | 5, 18 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
| 20 | sssigagen 34165 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽)) | |
| 21 | 1, 8, 20 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐽 ⊆ (sigaGen‘𝐽)) |
| 22 | 21, 6 | sseqtrrd 3967 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ 𝑆) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → 𝐽 ⊆ 𝑆) |
| 24 | cnima 23186 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝐽) | |
| 25 | 1, 24 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝐽) |
| 26 | 23, 25 | sseldd 3930 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝑆) |
| 27 | 26 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆) |
| 28 | elex 3457 | . . . 4 ⊢ (𝐾 ∈ Top → 𝐾 ∈ V) | |
| 29 | 1, 14, 28 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐾 ∈ V) |
| 30 | sigagensiga 34161 | . . . . . 6 ⊢ (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) | |
| 31 | 1, 8, 30 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) |
| 32 | 6, 31 | eqeltrd 2831 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (sigAlgebra‘∪ 𝐽)) |
| 33 | elrnsiga 34146 | . . . 4 ⊢ (𝑆 ∈ (sigAlgebra‘∪ 𝐽) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 34 | 32, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 35 | 29, 34, 12 | imambfm 34282 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹:∪ 𝑆⟶∪ 𝑇 ∧ ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆))) |
| 36 | 19, 27, 35 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ∪ cuni 4858 ◡ccnv 5618 ran crn 5620 “ cima 5622 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 Topctop 22814 Cn ccn 23145 sigAlgebracsiga 34128 sigaGencsigagen 34158 MblFnMcmbfm 34269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-ac2 10360 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9402 df-dju 9800 df-card 9838 df-acn 9841 df-ac 10013 df-top 22815 df-topon 22832 df-cn 23148 df-siga 34129 df-sigagen 34159 df-mbfm 34270 |
| This theorem is referenced by: sxbrsiga 34310 rrvadd 34472 rrvmulc 34473 |
| Copyright terms: Public domain | W3C validator |