![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnmbfm | Structured version Visualization version GIF version |
Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
Ref | Expression |
---|---|
cnmbfm.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
cnmbfm.2 | ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) |
cnmbfm.3 | ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) |
Ref | Expression |
---|---|
cnmbfm | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmbfm.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | eqid 2825 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | eqid 2825 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
4 | 2, 3 | cnf 21428 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:∪ 𝐽⟶∪ 𝐾) |
6 | cnmbfm.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) | |
7 | 6 | unieqd 4670 | . . . . 5 ⊢ (𝜑 → ∪ 𝑆 = ∪ (sigaGen‘𝐽)) |
8 | cntop1 21422 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
9 | unisg 30747 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
10 | 1, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
11 | 7, 10 | eqtrd 2861 | . . . 4 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐽) |
12 | cnmbfm.3 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) | |
13 | 12 | unieqd 4670 | . . . . 5 ⊢ (𝜑 → ∪ 𝑇 = ∪ (sigaGen‘𝐾)) |
14 | cntop2 21423 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
15 | unisg 30747 | . . . . . 6 ⊢ (𝐾 ∈ Top → ∪ (sigaGen‘𝐾) = ∪ 𝐾) | |
16 | 1, 14, 15 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∪ (sigaGen‘𝐾) = ∪ 𝐾) |
17 | 13, 16 | eqtrd 2861 | . . . 4 ⊢ (𝜑 → ∪ 𝑇 = ∪ 𝐾) |
18 | 11, 17 | feq23d 6277 | . . 3 ⊢ (𝜑 → (𝐹:∪ 𝑆⟶∪ 𝑇 ↔ 𝐹:∪ 𝐽⟶∪ 𝐾)) |
19 | 5, 18 | mpbird 249 | . 2 ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
20 | sssigagen 30749 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (sigaGen‘𝐽)) | |
21 | 1, 8, 20 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐽 ⊆ (sigaGen‘𝐽)) |
22 | 21, 6 | sseqtr4d 3867 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ 𝑆) |
23 | 22 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → 𝐽 ⊆ 𝑆) |
24 | cnima 21447 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝐽) | |
25 | 1, 24 | sylan 575 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝐽) |
26 | 23, 25 | sseldd 3828 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝑆) |
27 | 26 | ralrimiva 3175 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆) |
28 | elex 3429 | . . . 4 ⊢ (𝐾 ∈ Top → 𝐾 ∈ V) | |
29 | 1, 14, 28 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐾 ∈ V) |
30 | sigagensiga 30745 | . . . . . 6 ⊢ (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) | |
31 | 1, 8, 30 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) |
32 | 6, 31 | eqeltrd 2906 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (sigAlgebra‘∪ 𝐽)) |
33 | elrnsiga 30730 | . . . 4 ⊢ (𝑆 ∈ (sigAlgebra‘∪ 𝐽) → 𝑆 ∈ ∪ ran sigAlgebra) | |
34 | 32, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
35 | 29, 34, 12 | imambfm 30865 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹:∪ 𝑆⟶∪ 𝑇 ∧ ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆))) |
36 | 19, 27, 35 | mpbir2and 704 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 Vcvv 3414 ⊆ wss 3798 ∪ cuni 4660 ◡ccnv 5345 ran crn 5347 “ cima 5349 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 Topctop 21075 Cn ccn 21406 sigAlgebracsiga 30711 sigaGencsigagen 30742 MblFnMcmbfm 30853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-ac2 9607 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-oi 8691 df-card 9085 df-acn 9088 df-ac 9259 df-cda 9312 df-top 21076 df-topon 21093 df-cn 21409 df-siga 30712 df-sigagen 30743 df-mbfm 30854 |
This theorem is referenced by: sxbrsiga 30893 rrvadd 31056 rrvmulc 31057 |
Copyright terms: Public domain | W3C validator |