Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnsigau Structured version   Visualization version   GIF version

Theorem isrnsigau 34124
Description: The property of being a sigma-algebra, universe is the union set. (Contributed by Thierry Arnoux, 11-Nov-2016.)
Assertion
Ref Expression
isrnsigau (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
Distinct variable group:   𝑥,𝑆

Proof of Theorem isrnsigau
StepHypRef Expression
1 sgon 34121 . 2 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
2 elex 3471 . . 3 (𝑆 ran sigAlgebra → 𝑆 ∈ V)
3 issiga 34109 . . 3 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘ 𝑆) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
42, 3syl 17 . 2 (𝑆 ran sigAlgebra → (𝑆 ∈ (sigAlgebra‘ 𝑆) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
51, 4mpbid 232 1 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3045  Vcvv 3450  cdif 3914  wss 3917  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  ran crn 5642  cfv 6514  ωcom 7845  cdom 8919  sigAlgebracsiga 34105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-siga 34106
This theorem is referenced by:  sigaclci  34129  difelsiga  34130  unelsiga  34131  cntmeas  34223  probfinmeasbALTV  34427
  Copyright terms: Public domain W3C validator