Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcnt Structured version   Visualization version   GIF version

Theorem mbfmcnt 32135
Description: All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Assertion
Ref Expression
mbfmcnt (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑m 𝑂))

Proof of Theorem mbfmcnt
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsiga 31998 . . . . . 6 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
2 elrnsiga 31994 . . . . . 6 (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) → 𝒫 𝑂 ran sigAlgebra)
31, 2syl 17 . . . . 5 (𝑂𝑉 → 𝒫 𝑂 ran sigAlgebra)
4 brsigarn 32052 . . . . . 6 𝔅 ∈ (sigAlgebra‘ℝ)
5 elrnsiga 31994 . . . . . 6 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
64, 5mp1i 13 . . . . 5 (𝑂𝑉 → 𝔅 ran sigAlgebra)
73, 6ismbfm 32119 . . . 4 (𝑂𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅) ↔ (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)))
8 unibrsiga 32054 . . . . . . . . . 10 𝔅 = ℝ
9 reex 10893 . . . . . . . . . 10 ℝ ∈ V
108, 9eqeltri 2835 . . . . . . . . 9 𝔅 ∈ V
11 unipw 5360 . . . . . . . . . 10 𝒫 𝑂 = 𝑂
12 elex 3440 . . . . . . . . . 10 (𝑂𝑉𝑂 ∈ V)
1311, 12eqeltrid 2843 . . . . . . . . 9 (𝑂𝑉 𝒫 𝑂 ∈ V)
14 elmapg 8586 . . . . . . . . 9 (( 𝔅 ∈ V ∧ 𝒫 𝑂 ∈ V) → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ 𝑓: 𝒫 𝑂 𝔅))
1510, 13, 14sylancr 586 . . . . . . . 8 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ 𝑓: 𝒫 𝑂 𝔅))
1611feq2i 6576 . . . . . . . 8 (𝑓: 𝒫 𝑂 𝔅𝑓:𝑂 𝔅)
1715, 16bitrdi 286 . . . . . . 7 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ 𝑓:𝑂 𝔅))
18 ffn 6584 . . . . . . 7 (𝑓:𝑂 𝔅𝑓 Fn 𝑂)
1917, 18syl6bi 252 . . . . . 6 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) → 𝑓 Fn 𝑂))
20 elpreima 6917 . . . . . . . . . 10 (𝑓 Fn 𝑂 → (𝑦 ∈ (𝑓𝑥) ↔ (𝑦𝑂 ∧ (𝑓𝑦) ∈ 𝑥)))
21 simpl 482 . . . . . . . . . 10 ((𝑦𝑂 ∧ (𝑓𝑦) ∈ 𝑥) → 𝑦𝑂)
2220, 21syl6bi 252 . . . . . . . . 9 (𝑓 Fn 𝑂 → (𝑦 ∈ (𝑓𝑥) → 𝑦𝑂))
2322ssrdv 3923 . . . . . . . 8 (𝑓 Fn 𝑂 → (𝑓𝑥) ⊆ 𝑂)
24 vex 3426 . . . . . . . . . . 11 𝑓 ∈ V
2524cnvex 7746 . . . . . . . . . 10 𝑓 ∈ V
26 imaexg 7736 . . . . . . . . . 10 (𝑓 ∈ V → (𝑓𝑥) ∈ V)
2725, 26ax-mp 5 . . . . . . . . 9 (𝑓𝑥) ∈ V
2827elpw 4534 . . . . . . . 8 ((𝑓𝑥) ∈ 𝒫 𝑂 ↔ (𝑓𝑥) ⊆ 𝑂)
2923, 28sylibr 233 . . . . . . 7 (𝑓 Fn 𝑂 → (𝑓𝑥) ∈ 𝒫 𝑂)
3029ralrimivw 3108 . . . . . 6 (𝑓 Fn 𝑂 → ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)
3119, 30syl6 35 . . . . 5 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) → ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂))
3231pm4.71d 561 . . . 4 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)))
337, 32bitr4d 281 . . 3 (𝑂𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅) ↔ 𝑓 ∈ ( 𝔅m 𝒫 𝑂)))
3433eqrdv 2736 . 2 (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = ( 𝔅m 𝒫 𝑂))
358, 11oveq12i 7267 . 2 ( 𝔅m 𝒫 𝑂) = (ℝ ↑m 𝑂)
3634, 35eqtrdi 2795 1 (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑m 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  𝒫 cpw 4530   cuni 4836  ccnv 5579  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cr 10801  sigAlgebracsiga 31976  𝔅cbrsiga 32049  MblFnMcmbfm 32117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioo 13012  df-topgen 17071  df-top 21951  df-bases 22004  df-siga 31977  df-sigagen 32007  df-brsiga 32050  df-mbfm 32118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator