Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcnt Structured version   Visualization version   GIF version

Theorem mbfmcnt 30932
Description: All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Assertion
Ref Expression
mbfmcnt (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑𝑚 𝑂))

Proof of Theorem mbfmcnt
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsiga 30795 . . . . . 6 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
2 elrnsiga 30791 . . . . . 6 (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) → 𝒫 𝑂 ran sigAlgebra)
31, 2syl 17 . . . . 5 (𝑂𝑉 → 𝒫 𝑂 ran sigAlgebra)
4 brsigarn 30849 . . . . . 6 𝔅 ∈ (sigAlgebra‘ℝ)
5 elrnsiga 30791 . . . . . 6 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
64, 5mp1i 13 . . . . 5 (𝑂𝑉 → 𝔅 ran sigAlgebra)
73, 6ismbfm 30916 . . . 4 (𝑂𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅) ↔ (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)))
8 unibrsiga 30851 . . . . . . . . . 10 𝔅 = ℝ
9 reex 10365 . . . . . . . . . 10 ℝ ∈ V
108, 9eqeltri 2855 . . . . . . . . 9 𝔅 ∈ V
11 unipw 5152 . . . . . . . . . 10 𝒫 𝑂 = 𝑂
12 elex 3414 . . . . . . . . . 10 (𝑂𝑉𝑂 ∈ V)
1311, 12syl5eqel 2863 . . . . . . . . 9 (𝑂𝑉 𝒫 𝑂 ∈ V)
14 elmapg 8155 . . . . . . . . 9 (( 𝔅 ∈ V ∧ 𝒫 𝑂 ∈ V) → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ↔ 𝑓: 𝒫 𝑂 𝔅))
1510, 13, 14sylancr 581 . . . . . . . 8 (𝑂𝑉 → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ↔ 𝑓: 𝒫 𝑂 𝔅))
1611feq2i 6285 . . . . . . . 8 (𝑓: 𝒫 𝑂 𝔅𝑓:𝑂 𝔅)
1715, 16syl6bb 279 . . . . . . 7 (𝑂𝑉 → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ↔ 𝑓:𝑂 𝔅))
18 ffn 6293 . . . . . . 7 (𝑓:𝑂 𝔅𝑓 Fn 𝑂)
1917, 18syl6bi 245 . . . . . 6 (𝑂𝑉 → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) → 𝑓 Fn 𝑂))
20 elpreima 6602 . . . . . . . . . 10 (𝑓 Fn 𝑂 → (𝑦 ∈ (𝑓𝑥) ↔ (𝑦𝑂 ∧ (𝑓𝑦) ∈ 𝑥)))
21 simpl 476 . . . . . . . . . 10 ((𝑦𝑂 ∧ (𝑓𝑦) ∈ 𝑥) → 𝑦𝑂)
2220, 21syl6bi 245 . . . . . . . . 9 (𝑓 Fn 𝑂 → (𝑦 ∈ (𝑓𝑥) → 𝑦𝑂))
2322ssrdv 3827 . . . . . . . 8 (𝑓 Fn 𝑂 → (𝑓𝑥) ⊆ 𝑂)
24 vex 3401 . . . . . . . . . . 11 𝑓 ∈ V
2524cnvex 7394 . . . . . . . . . 10 𝑓 ∈ V
26 imaexg 7384 . . . . . . . . . 10 (𝑓 ∈ V → (𝑓𝑥) ∈ V)
2725, 26ax-mp 5 . . . . . . . . 9 (𝑓𝑥) ∈ V
2827elpw 4385 . . . . . . . 8 ((𝑓𝑥) ∈ 𝒫 𝑂 ↔ (𝑓𝑥) ⊆ 𝑂)
2923, 28sylibr 226 . . . . . . 7 (𝑓 Fn 𝑂 → (𝑓𝑥) ∈ 𝒫 𝑂)
3029ralrimivw 3149 . . . . . 6 (𝑓 Fn 𝑂 → ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)
3119, 30syl6 35 . . . . 5 (𝑂𝑉 → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) → ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂))
3231pm4.71d 557 . . . 4 (𝑂𝑉 → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ↔ (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)))
337, 32bitr4d 274 . . 3 (𝑂𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅) ↔ 𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂)))
3433eqrdv 2776 . 2 (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = ( 𝔅𝑚 𝒫 𝑂))
358, 11oveq12i 6936 . 2 ( 𝔅𝑚 𝒫 𝑂) = (ℝ ↑𝑚 𝑂)
3634, 35syl6eq 2830 1 (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑𝑚 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wral 3090  Vcvv 3398  wss 3792  𝒫 cpw 4379   cuni 4673  ccnv 5356  ran crn 5358  cima 5360   Fn wfn 6132  wf 6133  cfv 6137  (class class class)co 6924  𝑚 cmap 8142  cr 10273  sigAlgebracsiga 30772  𝔅cbrsiga 30846  MblFnMcmbfm 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-pre-lttri 10348  ax-pre-lttrn 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-ioo 12495  df-topgen 16494  df-top 21110  df-bases 21162  df-siga 30773  df-sigagen 30804  df-brsiga 30847  df-mbfm 30915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator