Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcnt Structured version   Visualization version   GIF version

Theorem mbfmcnt 31530
Description: All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Assertion
Ref Expression
mbfmcnt (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑m 𝑂))

Proof of Theorem mbfmcnt
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsiga 31393 . . . . . 6 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
2 elrnsiga 31389 . . . . . 6 (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) → 𝒫 𝑂 ran sigAlgebra)
31, 2syl 17 . . . . 5 (𝑂𝑉 → 𝒫 𝑂 ran sigAlgebra)
4 brsigarn 31447 . . . . . 6 𝔅 ∈ (sigAlgebra‘ℝ)
5 elrnsiga 31389 . . . . . 6 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
64, 5mp1i 13 . . . . 5 (𝑂𝑉 → 𝔅 ran sigAlgebra)
73, 6ismbfm 31514 . . . 4 (𝑂𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅) ↔ (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)))
8 unibrsiga 31449 . . . . . . . . . 10 𝔅 = ℝ
9 reex 10631 . . . . . . . . . 10 ℝ ∈ V
108, 9eqeltri 2912 . . . . . . . . 9 𝔅 ∈ V
11 unipw 5346 . . . . . . . . . 10 𝒫 𝑂 = 𝑂
12 elex 3515 . . . . . . . . . 10 (𝑂𝑉𝑂 ∈ V)
1311, 12eqeltrid 2920 . . . . . . . . 9 (𝑂𝑉 𝒫 𝑂 ∈ V)
14 elmapg 8422 . . . . . . . . 9 (( 𝔅 ∈ V ∧ 𝒫 𝑂 ∈ V) → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ 𝑓: 𝒫 𝑂 𝔅))
1510, 13, 14sylancr 589 . . . . . . . 8 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ 𝑓: 𝒫 𝑂 𝔅))
1611feq2i 6509 . . . . . . . 8 (𝑓: 𝒫 𝑂 𝔅𝑓:𝑂 𝔅)
1715, 16syl6bb 289 . . . . . . 7 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ 𝑓:𝑂 𝔅))
18 ffn 6517 . . . . . . 7 (𝑓:𝑂 𝔅𝑓 Fn 𝑂)
1917, 18syl6bi 255 . . . . . 6 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) → 𝑓 Fn 𝑂))
20 elpreima 6831 . . . . . . . . . 10 (𝑓 Fn 𝑂 → (𝑦 ∈ (𝑓𝑥) ↔ (𝑦𝑂 ∧ (𝑓𝑦) ∈ 𝑥)))
21 simpl 485 . . . . . . . . . 10 ((𝑦𝑂 ∧ (𝑓𝑦) ∈ 𝑥) → 𝑦𝑂)
2220, 21syl6bi 255 . . . . . . . . 9 (𝑓 Fn 𝑂 → (𝑦 ∈ (𝑓𝑥) → 𝑦𝑂))
2322ssrdv 3976 . . . . . . . 8 (𝑓 Fn 𝑂 → (𝑓𝑥) ⊆ 𝑂)
24 vex 3500 . . . . . . . . . . 11 𝑓 ∈ V
2524cnvex 7633 . . . . . . . . . 10 𝑓 ∈ V
26 imaexg 7623 . . . . . . . . . 10 (𝑓 ∈ V → (𝑓𝑥) ∈ V)
2725, 26ax-mp 5 . . . . . . . . 9 (𝑓𝑥) ∈ V
2827elpw 4546 . . . . . . . 8 ((𝑓𝑥) ∈ 𝒫 𝑂 ↔ (𝑓𝑥) ⊆ 𝑂)
2923, 28sylibr 236 . . . . . . 7 (𝑓 Fn 𝑂 → (𝑓𝑥) ∈ 𝒫 𝑂)
3029ralrimivw 3186 . . . . . 6 (𝑓 Fn 𝑂 → ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)
3119, 30syl6 35 . . . . 5 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) → ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂))
3231pm4.71d 564 . . . 4 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)))
337, 32bitr4d 284 . . 3 (𝑂𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅) ↔ 𝑓 ∈ ( 𝔅m 𝒫 𝑂)))
3433eqrdv 2822 . 2 (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = ( 𝔅m 𝒫 𝑂))
358, 11oveq12i 7171 . 2 ( 𝔅m 𝒫 𝑂) = (ℝ ↑m 𝑂)
3634, 35syl6eq 2875 1 (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑m 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  wss 3939  𝒫 cpw 4542   cuni 4841  ccnv 5557  ran crn 5559  cima 5561   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  m cmap 8409  cr 10539  sigAlgebracsiga 31371  𝔅cbrsiga 31444  MblFnMcmbfm 31512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-pre-lttri 10614  ax-pre-lttrn 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-ioo 12745  df-topgen 16720  df-top 21505  df-bases 21557  df-siga 31372  df-sigagen 31402  df-brsiga 31445  df-mbfm 31513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator