Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcnt Structured version   Visualization version   GIF version

Theorem mbfmcnt 34266
Description: All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Assertion
Ref Expression
mbfmcnt (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑m 𝑂))

Proof of Theorem mbfmcnt
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsiga 34127 . . . . . 6 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
2 elrnsiga 34123 . . . . . 6 (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) → 𝒫 𝑂 ran sigAlgebra)
31, 2syl 17 . . . . 5 (𝑂𝑉 → 𝒫 𝑂 ran sigAlgebra)
4 brsigarn 34181 . . . . . 6 𝔅 ∈ (sigAlgebra‘ℝ)
5 elrnsiga 34123 . . . . . 6 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
64, 5mp1i 13 . . . . 5 (𝑂𝑉 → 𝔅 ran sigAlgebra)
73, 6ismbfm 34248 . . . 4 (𝑂𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅) ↔ (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)))
8 unibrsiga 34183 . . . . . . . . . 10 𝔅 = ℝ
9 reex 11166 . . . . . . . . . 10 ℝ ∈ V
108, 9eqeltri 2825 . . . . . . . . 9 𝔅 ∈ V
11 unipw 5413 . . . . . . . . . 10 𝒫 𝑂 = 𝑂
12 elex 3471 . . . . . . . . . 10 (𝑂𝑉𝑂 ∈ V)
1311, 12eqeltrid 2833 . . . . . . . . 9 (𝑂𝑉 𝒫 𝑂 ∈ V)
14 elmapg 8815 . . . . . . . . 9 (( 𝔅 ∈ V ∧ 𝒫 𝑂 ∈ V) → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ 𝑓: 𝒫 𝑂 𝔅))
1510, 13, 14sylancr 587 . . . . . . . 8 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ 𝑓: 𝒫 𝑂 𝔅))
1611feq2i 6683 . . . . . . . 8 (𝑓: 𝒫 𝑂 𝔅𝑓:𝑂 𝔅)
1715, 16bitrdi 287 . . . . . . 7 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ 𝑓:𝑂 𝔅))
18 ffn 6691 . . . . . . 7 (𝑓:𝑂 𝔅𝑓 Fn 𝑂)
1917, 18biimtrdi 253 . . . . . 6 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) → 𝑓 Fn 𝑂))
20 elpreima 7033 . . . . . . . . . 10 (𝑓 Fn 𝑂 → (𝑦 ∈ (𝑓𝑥) ↔ (𝑦𝑂 ∧ (𝑓𝑦) ∈ 𝑥)))
21 simpl 482 . . . . . . . . . 10 ((𝑦𝑂 ∧ (𝑓𝑦) ∈ 𝑥) → 𝑦𝑂)
2220, 21biimtrdi 253 . . . . . . . . 9 (𝑓 Fn 𝑂 → (𝑦 ∈ (𝑓𝑥) → 𝑦𝑂))
2322ssrdv 3955 . . . . . . . 8 (𝑓 Fn 𝑂 → (𝑓𝑥) ⊆ 𝑂)
24 vex 3454 . . . . . . . . . . 11 𝑓 ∈ V
2524cnvex 7904 . . . . . . . . . 10 𝑓 ∈ V
26 imaexg 7892 . . . . . . . . . 10 (𝑓 ∈ V → (𝑓𝑥) ∈ V)
2725, 26ax-mp 5 . . . . . . . . 9 (𝑓𝑥) ∈ V
2827elpw 4570 . . . . . . . 8 ((𝑓𝑥) ∈ 𝒫 𝑂 ↔ (𝑓𝑥) ⊆ 𝑂)
2923, 28sylibr 234 . . . . . . 7 (𝑓 Fn 𝑂 → (𝑓𝑥) ∈ 𝒫 𝑂)
3029ralrimivw 3130 . . . . . 6 (𝑓 Fn 𝑂 → ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)
3119, 30syl6 35 . . . . 5 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) → ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂))
3231pm4.71d 561 . . . 4 (𝑂𝑉 → (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ↔ (𝑓 ∈ ( 𝔅m 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)))
337, 32bitr4d 282 . . 3 (𝑂𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅) ↔ 𝑓 ∈ ( 𝔅m 𝒫 𝑂)))
3433eqrdv 2728 . 2 (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = ( 𝔅m 𝒫 𝑂))
358, 11oveq12i 7402 . 2 ( 𝔅m 𝒫 𝑂) = (ℝ ↑m 𝑂)
3634, 35eqtrdi 2781 1 (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑m 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  𝒫 cpw 4566   cuni 4874  ccnv 5640  ran crn 5642  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  cr 11074  sigAlgebracsiga 34105  𝔅cbrsiga 34178  MblFnMcmbfm 34246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ioo 13317  df-topgen 17413  df-top 22788  df-bases 22840  df-siga 34106  df-sigagen 34136  df-brsiga 34179  df-mbfm 34247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator