Step | Hyp | Ref
| Expression |
1 | | pwsiga 31998 |
. . . . . 6
⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
2 | | elrnsiga 31994 |
. . . . . 6
⊢
(𝒫 𝑂 ∈
(sigAlgebra‘𝑂) →
𝒫 𝑂 ∈ ∪ ran sigAlgebra) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ ∪ ran
sigAlgebra) |
4 | | brsigarn 32052 |
. . . . . 6
⊢
𝔅ℝ ∈
(sigAlgebra‘ℝ) |
5 | | elrnsiga 31994 |
. . . . . 6
⊢
(𝔅ℝ ∈ (sigAlgebra‘ℝ) →
𝔅ℝ ∈ ∪ ran
sigAlgebra) |
6 | 4, 5 | mp1i 13 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → 𝔅ℝ ∈
∪ ran sigAlgebra) |
7 | 3, 6 | ismbfm 32119 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅ℝ) ↔
(𝑓 ∈ (∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝑓 “ 𝑥) ∈ 𝒫 𝑂))) |
8 | | unibrsiga 32054 |
. . . . . . . . . 10
⊢ ∪ 𝔅ℝ = ℝ |
9 | | reex 10893 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
10 | 8, 9 | eqeltri 2835 |
. . . . . . . . 9
⊢ ∪ 𝔅ℝ ∈ V |
11 | | unipw 5360 |
. . . . . . . . . 10
⊢ ∪ 𝒫 𝑂 = 𝑂 |
12 | | elex 3440 |
. . . . . . . . . 10
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ V) |
13 | 11, 12 | eqeltrid 2843 |
. . . . . . . . 9
⊢ (𝑂 ∈ 𝑉 → ∪
𝒫 𝑂 ∈
V) |
14 | | elmapg 8586 |
. . . . . . . . 9
⊢ ((∪ 𝔅ℝ ∈ V ∧ ∪ 𝒫 𝑂 ∈ V) → (𝑓 ∈ (∪
𝔅ℝ ↑m ∪
𝒫 𝑂) ↔ 𝑓:∪
𝒫 𝑂⟶∪ 𝔅ℝ)) |
15 | 10, 13, 14 | sylancr 586 |
. . . . . . . 8
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (∪
𝔅ℝ ↑m ∪
𝒫 𝑂) ↔ 𝑓:∪
𝒫 𝑂⟶∪ 𝔅ℝ)) |
16 | 11 | feq2i 6576 |
. . . . . . . 8
⊢ (𝑓:∪
𝒫 𝑂⟶∪ 𝔅ℝ ↔ 𝑓:𝑂⟶∪
𝔅ℝ) |
17 | 15, 16 | bitrdi 286 |
. . . . . . 7
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (∪
𝔅ℝ ↑m ∪
𝒫 𝑂) ↔ 𝑓:𝑂⟶∪
𝔅ℝ)) |
18 | | ffn 6584 |
. . . . . . 7
⊢ (𝑓:𝑂⟶∪
𝔅ℝ → 𝑓 Fn 𝑂) |
19 | 17, 18 | syl6bi 252 |
. . . . . 6
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (∪
𝔅ℝ ↑m ∪
𝒫 𝑂) → 𝑓 Fn 𝑂)) |
20 | | elpreima 6917 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑂 → (𝑦 ∈ (◡𝑓 “ 𝑥) ↔ (𝑦 ∈ 𝑂 ∧ (𝑓‘𝑦) ∈ 𝑥))) |
21 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑂 ∧ (𝑓‘𝑦) ∈ 𝑥) → 𝑦 ∈ 𝑂) |
22 | 20, 21 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑂 → (𝑦 ∈ (◡𝑓 “ 𝑥) → 𝑦 ∈ 𝑂)) |
23 | 22 | ssrdv 3923 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑂 → (◡𝑓 “ 𝑥) ⊆ 𝑂) |
24 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
25 | 24 | cnvex 7746 |
. . . . . . . . . 10
⊢ ◡𝑓 ∈ V |
26 | | imaexg 7736 |
. . . . . . . . . 10
⊢ (◡𝑓 ∈ V → (◡𝑓 “ 𝑥) ∈ V) |
27 | 25, 26 | ax-mp 5 |
. . . . . . . . 9
⊢ (◡𝑓 “ 𝑥) ∈ V |
28 | 27 | elpw 4534 |
. . . . . . . 8
⊢ ((◡𝑓 “ 𝑥) ∈ 𝒫 𝑂 ↔ (◡𝑓 “ 𝑥) ⊆ 𝑂) |
29 | 23, 28 | sylibr 233 |
. . . . . . 7
⊢ (𝑓 Fn 𝑂 → (◡𝑓 “ 𝑥) ∈ 𝒫 𝑂) |
30 | 29 | ralrimivw 3108 |
. . . . . 6
⊢ (𝑓 Fn 𝑂 → ∀𝑥 ∈ 𝔅ℝ (◡𝑓 “ 𝑥) ∈ 𝒫 𝑂) |
31 | 19, 30 | syl6 35 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (∪
𝔅ℝ ↑m ∪
𝒫 𝑂) →
∀𝑥 ∈
𝔅ℝ (◡𝑓 “ 𝑥) ∈ 𝒫 𝑂)) |
32 | 31 | pm4.71d 561 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (∪
𝔅ℝ ↑m ∪
𝒫 𝑂) ↔ (𝑓 ∈ (∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝑓 “ 𝑥) ∈ 𝒫 𝑂))) |
33 | 7, 32 | bitr4d 281 |
. . 3
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅ℝ) ↔
𝑓 ∈ (∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂))) |
34 | 33 | eqrdv 2736 |
. 2
⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂MblFnM𝔅ℝ) = (∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂)) |
35 | 8, 11 | oveq12i 7267 |
. 2
⊢ (∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂) = (ℝ ↑m 𝑂) |
36 | 34, 35 | eqtrdi 2795 |
1
⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂MblFnM𝔅ℝ) =
(ℝ ↑m 𝑂)) |