MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsficl2d Structured version   Visualization version   GIF version

Theorem acsficl2d 18624
Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 18619. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsficld.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsficld.2 𝑁 = (mrCls‘𝐴)
acsficld.3 (𝜑𝑆𝑋)
Assertion
Ref Expression
acsficl2d (𝜑 → (𝑌 ∈ (𝑁𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁𝑥)))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑌   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑋(𝑥)

Proof of Theorem acsficl2d
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsficld.1 . . . 4 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsficld.2 . . . 4 𝑁 = (mrCls‘𝐴)
3 acsficld.3 . . . 4 (𝜑𝑆𝑋)
41, 2, 3acsficld 18623 . . 3 (𝜑 → (𝑁𝑆) = (𝑁 “ (𝒫 𝑆 ∩ Fin)))
54eleq2d 2830 . 2 (𝜑 → (𝑌 ∈ (𝑁𝑆) ↔ 𝑌 (𝑁 “ (𝒫 𝑆 ∩ Fin))))
61acsmred 17716 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
7 funmpt 6618 . . . 4 Fun (𝑧 ∈ 𝒫 𝑋 {𝑤𝐴𝑧𝑤})
82mrcfval 17668 . . . . 5 (𝐴 ∈ (Moore‘𝑋) → 𝑁 = (𝑧 ∈ 𝒫 𝑋 {𝑤𝐴𝑧𝑤}))
98funeqd 6602 . . . 4 (𝐴 ∈ (Moore‘𝑋) → (Fun 𝑁 ↔ Fun (𝑧 ∈ 𝒫 𝑋 {𝑤𝐴𝑧𝑤})))
107, 9mpbiri 258 . . 3 (𝐴 ∈ (Moore‘𝑋) → Fun 𝑁)
11 eluniima 7289 . . 3 (Fun 𝑁 → (𝑌 (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁𝑥)))
126, 10, 113syl 18 . 2 (𝜑 → (𝑌 (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁𝑥)))
135, 12bitrd 279 1 (𝜑 → (𝑌 ∈ (𝑁𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931   cint 4970  cmpt 5249  cima 5703  Fun wfun 6569  cfv 6575  Fincfn 9005  Moorecmre 17642  mrClscmrc 17643  ACScacs 17645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-fz 13570  df-struct 17196  df-slot 17231  df-ndx 17243  df-base 17261  df-tset 17332  df-ple 17333  df-ocomp 17334  df-mre 17646  df-mrc 17647  df-acs 17649  df-proset 18367  df-drs 18368  df-poset 18385  df-ipo 18600
This theorem is referenced by:  acsfiindd  18625  acsmapd  18626
  Copyright terms: Public domain W3C validator