| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsficl2d | Structured version Visualization version GIF version | ||
| Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 18488. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsficld.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| acsficld.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| acsficld.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| acsficl2d | ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsficld.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsficld.2 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | acsficld.3 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 4 | 1, 2, 3 | acsficld 18492 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin))) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ 𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)))) |
| 6 | 1 | acsmred 17597 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| 7 | funmpt 6538 | . . . 4 ⊢ Fun (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤}) | |
| 8 | 2 | mrcfval 17549 | . . . . 5 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝑁 = (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤})) |
| 9 | 8 | funeqd 6522 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → (Fun 𝑁 ↔ Fun (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤}))) |
| 10 | 7, 9 | mpbiri 258 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → Fun 𝑁) |
| 11 | eluniima 7206 | . . 3 ⊢ (Fun 𝑁 → (𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) | |
| 12 | 6, 10, 11 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
| 13 | 5, 12 | bitrd 279 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 ∩ cint 4906 ↦ cmpt 5183 “ cima 5634 Fun wfun 6493 ‘cfv 6499 Fincfn 8895 Moorecmre 17519 mrClscmrc 17520 ACScacs 17522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-tset 17215 df-ple 17216 df-ocomp 17217 df-mre 17523 df-mrc 17524 df-acs 17526 df-proset 18235 df-drs 18236 df-poset 18254 df-ipo 18469 |
| This theorem is referenced by: acsfiindd 18494 acsmapd 18495 |
| Copyright terms: Public domain | W3C validator |