![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsficl2d | Structured version Visualization version GIF version |
Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 18505. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsficld.1 | β’ (π β π΄ β (ACSβπ)) |
acsficld.2 | β’ π = (mrClsβπ΄) |
acsficld.3 | β’ (π β π β π) |
Ref | Expression |
---|---|
acsficl2d | β’ (π β (π β (πβπ) β βπ₯ β (π« π β© Fin)π β (πβπ₯))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsficld.1 | . . . 4 β’ (π β π΄ β (ACSβπ)) | |
2 | acsficld.2 | . . . 4 β’ π = (mrClsβπ΄) | |
3 | acsficld.3 | . . . 4 β’ (π β π β π) | |
4 | 1, 2, 3 | acsficld 18509 | . . 3 β’ (π β (πβπ) = βͺ (π β (π« π β© Fin))) |
5 | 4 | eleq2d 2818 | . 2 β’ (π β (π β (πβπ) β π β βͺ (π β (π« π β© Fin)))) |
6 | 1 | acsmred 17605 | . . 3 β’ (π β π΄ β (Mooreβπ)) |
7 | funmpt 6587 | . . . 4 β’ Fun (π§ β π« π β¦ β© {π€ β π΄ β£ π§ β π€}) | |
8 | 2 | mrcfval 17557 | . . . . 5 β’ (π΄ β (Mooreβπ) β π = (π§ β π« π β¦ β© {π€ β π΄ β£ π§ β π€})) |
9 | 8 | funeqd 6571 | . . . 4 β’ (π΄ β (Mooreβπ) β (Fun π β Fun (π§ β π« π β¦ β© {π€ β π΄ β£ π§ β π€}))) |
10 | 7, 9 | mpbiri 257 | . . 3 β’ (π΄ β (Mooreβπ) β Fun π) |
11 | eluniima 7252 | . . 3 β’ (Fun π β (π β βͺ (π β (π« π β© Fin)) β βπ₯ β (π« π β© Fin)π β (πβπ₯))) | |
12 | 6, 10, 11 | 3syl 18 | . 2 β’ (π β (π β βͺ (π β (π« π β© Fin)) β βπ₯ β (π« π β© Fin)π β (πβπ₯))) |
13 | 5, 12 | bitrd 278 | 1 β’ (π β (π β (πβπ) β βπ₯ β (π« π β© Fin)π β (πβπ₯))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1540 β wcel 2105 βwrex 3069 {crab 3431 β© cin 3948 β wss 3949 π« cpw 4603 βͺ cuni 4909 β© cint 4951 β¦ cmpt 5232 β cima 5680 Fun wfun 6538 βcfv 6544 Fincfn 8942 Moorecmre 17531 mrClscmrc 17532 ACScacs 17534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-slot 17120 df-ndx 17132 df-base 17150 df-tset 17221 df-ple 17222 df-ocomp 17223 df-mre 17535 df-mrc 17536 df-acs 17538 df-proset 18253 df-drs 18254 df-poset 18271 df-ipo 18486 |
This theorem is referenced by: acsfiindd 18511 acsmapd 18512 |
Copyright terms: Public domain | W3C validator |