| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsficl2d | Structured version Visualization version GIF version | ||
| Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 18561. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsficld.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| acsficld.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| acsficld.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| acsficl2d | ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsficld.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsficld.2 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | acsficld.3 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 4 | 1, 2, 3 | acsficld 18565 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin))) |
| 5 | 4 | eleq2d 2819 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ 𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)))) |
| 6 | 1 | acsmred 17670 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| 7 | funmpt 6584 | . . . 4 ⊢ Fun (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤}) | |
| 8 | 2 | mrcfval 17622 | . . . . 5 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝑁 = (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤})) |
| 9 | 8 | funeqd 6568 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → (Fun 𝑁 ↔ Fun (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤}))) |
| 10 | 7, 9 | mpbiri 258 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → Fun 𝑁) |
| 11 | eluniima 7252 | . . 3 ⊢ (Fun 𝑁 → (𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) | |
| 12 | 6, 10, 11 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
| 13 | 5, 12 | bitrd 279 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {crab 3419 ∩ cin 3930 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4887 ∩ cint 4926 ↦ cmpt 5205 “ cima 5668 Fun wfun 6535 ‘cfv 6541 Fincfn 8967 Moorecmre 17596 mrClscmrc 17597 ACScacs 17599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17230 df-tset 17292 df-ple 17293 df-ocomp 17294 df-mre 17600 df-mrc 17601 df-acs 17603 df-proset 18310 df-drs 18311 df-poset 18329 df-ipo 18542 |
| This theorem is referenced by: acsfiindd 18567 acsmapd 18568 |
| Copyright terms: Public domain | W3C validator |