| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsficl2d | Structured version Visualization version GIF version | ||
| Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 18453. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsficld.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| acsficld.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| acsficld.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| acsficl2d | ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsficld.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsficld.2 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | acsficld.3 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 4 | 1, 2, 3 | acsficld 18457 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin))) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ 𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)))) |
| 6 | 1 | acsmred 17562 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| 7 | funmpt 6520 | . . . 4 ⊢ Fun (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤}) | |
| 8 | 2 | mrcfval 17514 | . . . . 5 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝑁 = (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤})) |
| 9 | 8 | funeqd 6504 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → (Fun 𝑁 ↔ Fun (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤}))) |
| 10 | 7, 9 | mpbiri 258 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → Fun 𝑁) |
| 11 | eluniima 7186 | . . 3 ⊢ (Fun 𝑁 → (𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) | |
| 12 | 6, 10, 11 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
| 13 | 5, 12 | bitrd 279 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3394 ∩ cin 3902 ⊆ wss 3903 𝒫 cpw 4551 ∪ cuni 4858 ∩ cint 4896 ↦ cmpt 5173 “ cima 5622 Fun wfun 6476 ‘cfv 6482 Fincfn 8872 Moorecmre 17484 mrClscmrc 17485 ACScacs 17487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-tset 17180 df-ple 17181 df-ocomp 17182 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-drs 18201 df-poset 18219 df-ipo 18434 |
| This theorem is referenced by: acsfiindd 18459 acsmapd 18460 |
| Copyright terms: Public domain | W3C validator |