Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acsficl2d | Structured version Visualization version GIF version |
Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 18332. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsficld.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
acsficld.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
acsficld.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
acsficl2d | ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsficld.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
2 | acsficld.2 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | acsficld.3 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
4 | 1, 2, 3 | acsficld 18336 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin))) |
5 | 4 | eleq2d 2823 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ 𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)))) |
6 | 1 | acsmred 17432 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
7 | funmpt 6506 | . . . 4 ⊢ Fun (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤}) | |
8 | 2 | mrcfval 17384 | . . . . 5 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝑁 = (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤})) |
9 | 8 | funeqd 6490 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → (Fun 𝑁 ↔ Fun (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤}))) |
10 | 7, 9 | mpbiri 257 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → Fun 𝑁) |
11 | eluniima 7160 | . . 3 ⊢ (Fun 𝑁 → (𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) | |
12 | 6, 10, 11 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
13 | 5, 12 | bitrd 278 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 {crab 3404 ∩ cin 3895 ⊆ wss 3896 𝒫 cpw 4543 ∪ cuni 4848 ∩ cint 4890 ↦ cmpt 5168 “ cima 5608 Fun wfun 6457 ‘cfv 6463 Fincfn 8779 Moorecmre 17358 mrClscmrc 17359 ACScacs 17361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-fz 13310 df-struct 16915 df-slot 16950 df-ndx 16962 df-base 16980 df-tset 17048 df-ple 17049 df-ocomp 17050 df-mre 17362 df-mrc 17363 df-acs 17365 df-proset 18080 df-drs 18081 df-poset 18098 df-ipo 18313 |
This theorem is referenced by: acsfiindd 18338 acsmapd 18339 |
Copyright terms: Public domain | W3C validator |