![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsficl2d | Structured version Visualization version GIF version |
Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl 17483. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsficld.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
acsficld.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
acsficld.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
acsficl2d | ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsficld.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
2 | acsficld.2 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | acsficld.3 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
4 | 1, 2, 3 | acsficld 17487 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin))) |
5 | 4 | eleq2d 2862 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ 𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)))) |
6 | 1 | acsmred 16628 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
7 | funmpt 6137 | . . . 4 ⊢ Fun (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤}) | |
8 | 2 | mrcfval 16580 | . . . . 5 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝑁 = (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤})) |
9 | 8 | funeqd 6121 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → (Fun 𝑁 ↔ Fun (𝑧 ∈ 𝒫 𝑋 ↦ ∩ {𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤}))) |
10 | 7, 9 | mpbiri 250 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → Fun 𝑁) |
11 | eluniima 6734 | . . 3 ⊢ (Fun 𝑁 → (𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) | |
12 | 6, 10, 11 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑌 ∈ ∪ (𝑁 “ (𝒫 𝑆 ∩ Fin)) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
13 | 5, 12 | bitrd 271 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘𝑆) ↔ ∃𝑥 ∈ (𝒫 𝑆 ∩ Fin)𝑌 ∈ (𝑁‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ∃wrex 3088 {crab 3091 ∩ cin 3766 ⊆ wss 3767 𝒫 cpw 4347 ∪ cuni 4626 ∩ cint 4665 ↦ cmpt 4920 “ cima 5313 Fun wfun 6093 ‘cfv 6099 Fincfn 8193 Moorecmre 16554 mrClscmrc 16555 ACScacs 16557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-tset 16283 df-ple 16284 df-ocomp 16285 df-mre 16558 df-mrc 16559 df-acs 16561 df-proset 17240 df-drs 17241 df-poset 17258 df-ipo 17464 |
This theorem is referenced by: acsfiindd 17489 acsmapd 17490 |
Copyright terms: Public domain | W3C validator |