Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzenom Structured version   Visualization version   GIF version

Theorem lzenom 42781
Description: Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
lzenom (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)

Proof of Theorem lzenom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12622 . . . 4 ℤ ∈ V
2 difexg 5329 . . . 4 (ℤ ∈ V → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
31, 2mp1i 13 . . 3 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
4 nnex 12272 . . . 4 ℕ ∈ V
54a1i 11 . . 3 (𝑁 ∈ ℤ → ℕ ∈ V)
6 ovex 7464 . . . 4 ((𝑁 + 1) − 𝑎) ∈ V
762a1i 12 . . 3 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 𝑎) ∈ V))
8 ovex 7464 . . . 4 ((𝑁 + 1) − 𝑏) ∈ V
982a1i 12 . . 3 (𝑁 ∈ ℤ → (𝑏 ∈ ℕ → ((𝑁 + 1) − 𝑏) ∈ V))
10 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑁 ∈ ℤ)
1110peano2zd 12725 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℤ)
12 simprl 771 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℤ)
1311, 12zsubcld 12727 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − 𝑎) ∈ ℤ)
14 zre 12617 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
1514ad2antrl 728 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℝ)
1611zred 12722 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℝ)
17 1red 11262 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 1 ∈ ℝ)
18 simprr 773 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎𝑁)
19 zcn 12618 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2019adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑁 ∈ ℂ)
21 ax-1cn 11213 . . . . . . . . . . 11 1 ∈ ℂ
22 pncan 11514 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
2320, 21, 22sylancl 586 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − 1) = 𝑁)
2418, 23breqtrrd 5171 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ≤ ((𝑁 + 1) − 1))
2515, 16, 17, 24lesubd 11867 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 1 ≤ ((𝑁 + 1) − 𝑎))
2611zcnd 12723 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℂ)
27 zcn 12618 . . . . . . . . . . 11 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
2827ad2antrl 728 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℂ)
2926, 28nncand 11625 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)) = 𝑎)
3029eqcomd 2743 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))
3113, 25, 30jca31 514 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
3231adantrr 717 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
33 eleq1 2829 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑏 ∈ ℤ ↔ ((𝑁 + 1) − 𝑎) ∈ ℤ))
34 breq2 5147 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → (1 ≤ 𝑏 ↔ 1 ≤ ((𝑁 + 1) − 𝑎)))
3533, 34anbi12d 632 . . . . . . . 8 (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ↔ (((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎))))
36 oveq2 7439 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑁 + 1) − 𝑏) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))
3736eqeq2d 2748 . . . . . . . 8 (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑎 = ((𝑁 + 1) − 𝑏) ↔ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
3835, 37anbi12d 632 . . . . . . 7 (𝑏 = ((𝑁 + 1) − 𝑎) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))))
3938ad2antll 729 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))))
4032, 39mpbird 257 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)))
41 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℤ)
4241peano2zd 12725 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℤ)
43 simprl 771 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℤ)
4442, 43zsubcld 12727 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑏) ∈ ℤ)
4542zred 12722 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℝ)
46 zre 12617 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4746adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℝ)
48 zre 12617 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
4948ad2antrl 728 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℝ)
5047recnd 11289 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℂ)
51 pncan2 11515 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 𝑁) = 1)
5250, 21, 51sylancl 586 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑁) = 1)
53 simprr 773 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 1 ≤ 𝑏)
5452, 53eqbrtrd 5165 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑁) ≤ 𝑏)
5545, 47, 49, 54subled 11866 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑏) ≤ 𝑁)
5642zcnd 12723 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℂ)
57 zcn 12618 . . . . . . . . . . 11 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
5857ad2antrl 728 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℂ)
5956, 58nncand 11625 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)) = 𝑏)
6059eqcomd 2743 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))
6144, 55, 60jca31 514 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
6261adantrr 717 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
63 eleq1 2829 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎 ∈ ℤ ↔ ((𝑁 + 1) − 𝑏) ∈ ℤ))
64 breq1 5146 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎𝑁 ↔ ((𝑁 + 1) − 𝑏) ≤ 𝑁))
6563, 64anbi12d 632 . . . . . . . 8 (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ↔ (((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁)))
66 oveq2 7439 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑁 + 1) − 𝑎) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))
6766eqeq2d 2748 . . . . . . . 8 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑏 = ((𝑁 + 1) − 𝑎) ↔ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
6865, 67anbi12d 632 . . . . . . 7 (𝑎 = ((𝑁 + 1) − 𝑏) → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))))
6968ad2antll 729 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))))
7062, 69mpbird 257 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)))
7140, 70impbida 801 . . . 4 (𝑁 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
72 ellz1 42778 . . . . 5 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
7372anbi1d 631 . . . 4 (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))))
74 elnnz1 12643 . . . . . 6 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏))
7574a1i 11 . . . . 5 (𝑁 ∈ ℤ → (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)))
7675anbi1d 631 . . . 4 (𝑁 ∈ ℤ → ((𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
7771, 73, 763bitr4d 311 . . 3 (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ (𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
783, 5, 7, 9, 77en2d 9028 . 2 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ℕ)
79 nnenom 14021 . 2 ℕ ≈ ω
80 entr 9046 . 2 (((ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ℕ ∧ ℕ ≈ ω) → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
8178, 79, 80sylancl 586 1 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948   class class class wbr 5143  cfv 6561  (class class class)co 7431  ωcom 7887  cen 8982  cc 11153  cr 11154  1c1 11156   + caddc 11158  cle 11296  cmin 11492  cn 12266  cz 12613  cuz 12878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879
This theorem is referenced by:  diophin  42783  diophren  42824
  Copyright terms: Public domain W3C validator