Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzenom Structured version   Visualization version   GIF version

Theorem lzenom 40295
Description: Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
lzenom (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)

Proof of Theorem lzenom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12185 . . . 4 ℤ ∈ V
2 difexg 5220 . . . 4 (ℤ ∈ V → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
31, 2mp1i 13 . . 3 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
4 nnex 11836 . . . 4 ℕ ∈ V
54a1i 11 . . 3 (𝑁 ∈ ℤ → ℕ ∈ V)
6 ovex 7246 . . . 4 ((𝑁 + 1) − 𝑎) ∈ V
762a1i 12 . . 3 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 𝑎) ∈ V))
8 ovex 7246 . . . 4 ((𝑁 + 1) − 𝑏) ∈ V
982a1i 12 . . 3 (𝑁 ∈ ℤ → (𝑏 ∈ ℕ → ((𝑁 + 1) − 𝑏) ∈ V))
10 simpl 486 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑁 ∈ ℤ)
1110peano2zd 12285 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℤ)
12 simprl 771 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℤ)
1311, 12zsubcld 12287 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − 𝑎) ∈ ℤ)
14 zre 12180 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
1514ad2antrl 728 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℝ)
1611zred 12282 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℝ)
17 1red 10834 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 1 ∈ ℝ)
18 simprr 773 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎𝑁)
19 zcn 12181 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2019adantr 484 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑁 ∈ ℂ)
21 ax-1cn 10787 . . . . . . . . . . 11 1 ∈ ℂ
22 pncan 11084 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
2320, 21, 22sylancl 589 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − 1) = 𝑁)
2418, 23breqtrrd 5081 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ≤ ((𝑁 + 1) − 1))
2515, 16, 17, 24lesubd 11436 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 1 ≤ ((𝑁 + 1) − 𝑎))
2611zcnd 12283 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℂ)
27 zcn 12181 . . . . . . . . . . 11 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
2827ad2antrl 728 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℂ)
2926, 28nncand 11194 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)) = 𝑎)
3029eqcomd 2743 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))
3113, 25, 30jca31 518 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
3231adantrr 717 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
33 eleq1 2825 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑏 ∈ ℤ ↔ ((𝑁 + 1) − 𝑎) ∈ ℤ))
34 breq2 5057 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → (1 ≤ 𝑏 ↔ 1 ≤ ((𝑁 + 1) − 𝑎)))
3533, 34anbi12d 634 . . . . . . . 8 (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ↔ (((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎))))
36 oveq2 7221 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑁 + 1) − 𝑏) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))
3736eqeq2d 2748 . . . . . . . 8 (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑎 = ((𝑁 + 1) − 𝑏) ↔ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
3835, 37anbi12d 634 . . . . . . 7 (𝑏 = ((𝑁 + 1) − 𝑎) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))))
3938ad2antll 729 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))))
4032, 39mpbird 260 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)))
41 simpl 486 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℤ)
4241peano2zd 12285 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℤ)
43 simprl 771 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℤ)
4442, 43zsubcld 12287 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑏) ∈ ℤ)
4542zred 12282 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℝ)
46 zre 12180 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4746adantr 484 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℝ)
48 zre 12180 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
4948ad2antrl 728 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℝ)
5047recnd 10861 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℂ)
51 pncan2 11085 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 𝑁) = 1)
5250, 21, 51sylancl 589 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑁) = 1)
53 simprr 773 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 1 ≤ 𝑏)
5452, 53eqbrtrd 5075 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑁) ≤ 𝑏)
5545, 47, 49, 54subled 11435 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑏) ≤ 𝑁)
5642zcnd 12283 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℂ)
57 zcn 12181 . . . . . . . . . . 11 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
5857ad2antrl 728 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℂ)
5956, 58nncand 11194 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)) = 𝑏)
6059eqcomd 2743 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))
6144, 55, 60jca31 518 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
6261adantrr 717 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
63 eleq1 2825 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎 ∈ ℤ ↔ ((𝑁 + 1) − 𝑏) ∈ ℤ))
64 breq1 5056 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎𝑁 ↔ ((𝑁 + 1) − 𝑏) ≤ 𝑁))
6563, 64anbi12d 634 . . . . . . . 8 (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ↔ (((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁)))
66 oveq2 7221 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑁 + 1) − 𝑎) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))
6766eqeq2d 2748 . . . . . . . 8 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑏 = ((𝑁 + 1) − 𝑎) ↔ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
6865, 67anbi12d 634 . . . . . . 7 (𝑎 = ((𝑁 + 1) − 𝑏) → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))))
6968ad2antll 729 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))))
7062, 69mpbird 260 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)))
7140, 70impbida 801 . . . 4 (𝑁 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
72 ellz1 40292 . . . . 5 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
7372anbi1d 633 . . . 4 (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))))
74 elnnz1 12203 . . . . . 6 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏))
7574a1i 11 . . . . 5 (𝑁 ∈ ℤ → (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)))
7675anbi1d 633 . . . 4 (𝑁 ∈ ℤ → ((𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
7771, 73, 763bitr4d 314 . . 3 (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ (𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
783, 5, 7, 9, 77en2d 8664 . 2 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ℕ)
79 nnenom 13553 . 2 ℕ ≈ ω
80 entr 8680 . 2 (((ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ℕ ∧ ℕ ≈ ω) → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
8178, 79, 80sylancl 589 1 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  cdif 3863   class class class wbr 5053  cfv 6380  (class class class)co 7213  ωcom 7644  cen 8623  cc 10727  cr 10728  1c1 10730   + caddc 10732  cle 10868  cmin 11062  cn 11830  cz 12176  cuz 12438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439
This theorem is referenced by:  diophin  40297  diophren  40338
  Copyright terms: Public domain W3C validator