Step | Hyp | Ref
| Expression |
1 | | zex 12374 |
. . . 4
⊢ ℤ
∈ V |
2 | | difexg 5260 |
. . . 4
⊢ (ℤ
∈ V → (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∈
V) |
3 | 1, 2 | mp1i 13 |
. . 3
⊢ (𝑁 ∈ ℤ → (ℤ
∖ (ℤ≥‘(𝑁 + 1))) ∈ V) |
4 | | nnex 12025 |
. . . 4
⊢ ℕ
∈ V |
5 | 4 | a1i 11 |
. . 3
⊢ (𝑁 ∈ ℤ → ℕ
∈ V) |
6 | | ovex 7340 |
. . . 4
⊢ ((𝑁 + 1) − 𝑎) ∈ V |
7 | 6 | 2a1i 12 |
. . 3
⊢ (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖
(ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 𝑎) ∈ V)) |
8 | | ovex 7340 |
. . . 4
⊢ ((𝑁 + 1) − 𝑏) ∈ V |
9 | 8 | 2a1i 12 |
. . 3
⊢ (𝑁 ∈ ℤ → (𝑏 ∈ ℕ → ((𝑁 + 1) − 𝑏) ∈ V)) |
10 | | simpl 484 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → 𝑁 ∈ ℤ) |
11 | 10 | peano2zd 12475 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → (𝑁 + 1) ∈ ℤ) |
12 | | simprl 769 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → 𝑎 ∈ ℤ) |
13 | 11, 12 | zsubcld 12477 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → ((𝑁 + 1) − 𝑎) ∈ ℤ) |
14 | | zre 12369 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℝ) |
15 | 14 | ad2antrl 726 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → 𝑎 ∈ ℝ) |
16 | 11 | zred 12472 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → (𝑁 + 1) ∈ ℝ) |
17 | | 1red 11022 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → 1 ∈ ℝ) |
18 | | simprr 771 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → 𝑎 ≤ 𝑁) |
19 | | zcn 12370 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
20 | 19 | adantr 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → 𝑁 ∈ ℂ) |
21 | | ax-1cn 10975 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
22 | | pncan 11273 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
23 | 20, 21, 22 | sylancl 587 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → ((𝑁 + 1) − 1) = 𝑁) |
24 | 18, 23 | breqtrrd 5109 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → 𝑎 ≤ ((𝑁 + 1) − 1)) |
25 | 15, 16, 17, 24 | lesubd 11625 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → 1 ≤ ((𝑁 + 1) − 𝑎)) |
26 | 11 | zcnd 12473 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → (𝑁 + 1) ∈ ℂ) |
27 | | zcn 12370 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℂ) |
28 | 27 | ad2antrl 726 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → 𝑎 ∈ ℂ) |
29 | 26, 28 | nncand 11383 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)) = 𝑎) |
30 | 29 | eqcomd 2742 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))) |
31 | 13, 25, 30 | jca31 516 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁)) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))) |
32 | 31 | adantrr 715 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))) |
33 | | eleq1 2824 |
. . . . . . . . 9
⊢ (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑏 ∈ ℤ ↔ ((𝑁 + 1) − 𝑎) ∈ ℤ)) |
34 | | breq2 5085 |
. . . . . . . . 9
⊢ (𝑏 = ((𝑁 + 1) − 𝑎) → (1 ≤ 𝑏 ↔ 1 ≤ ((𝑁 + 1) − 𝑎))) |
35 | 33, 34 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ↔ (((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)))) |
36 | | oveq2 7315 |
. . . . . . . . 9
⊢ (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑁 + 1) − 𝑏) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))) |
37 | 36 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑎 = ((𝑁 + 1) − 𝑏) ↔ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))) |
38 | 35, 37 | anbi12d 632 |
. . . . . . 7
⊢ (𝑏 = ((𝑁 + 1) − 𝑎) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))) |
39 | 38 | ad2antll 727 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))) |
40 | 32, 39 | mpbird 257 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) |
41 | | simpl 484 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → 𝑁 ∈
ℤ) |
42 | 41 | peano2zd 12475 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → (𝑁 + 1) ∈
ℤ) |
43 | | simprl 769 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → 𝑏 ∈
ℤ) |
44 | 42, 43 | zsubcld 12477 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → ((𝑁 + 1) − 𝑏) ∈ ℤ) |
45 | 42 | zred 12472 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → (𝑁 + 1) ∈
ℝ) |
46 | | zre 12369 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
47 | 46 | adantr 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → 𝑁 ∈
ℝ) |
48 | | zre 12369 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ℤ → 𝑏 ∈
ℝ) |
49 | 48 | ad2antrl 726 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → 𝑏 ∈
ℝ) |
50 | 47 | recnd 11049 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → 𝑁 ∈
ℂ) |
51 | | pncan2 11274 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 𝑁) =
1) |
52 | 50, 21, 51 | sylancl 587 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → ((𝑁 + 1) − 𝑁) = 1) |
53 | | simprr 771 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → 1 ≤ 𝑏) |
54 | 52, 53 | eqbrtrd 5103 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → ((𝑁 + 1) − 𝑁) ≤ 𝑏) |
55 | 45, 47, 49, 54 | subled 11624 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → ((𝑁 + 1) − 𝑏) ≤ 𝑁) |
56 | 42 | zcnd 12473 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → (𝑁 + 1) ∈
ℂ) |
57 | | zcn 12370 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ℤ → 𝑏 ∈
ℂ) |
58 | 57 | ad2antrl 726 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → 𝑏 ∈
ℂ) |
59 | 56, 58 | nncand 11383 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)) = 𝑏) |
60 | 59 | eqcomd 2742 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))) |
61 | 44, 55, 60 | jca31 516 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))) |
62 | 61 | adantrr 715 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤
𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))) |
63 | | eleq1 2824 |
. . . . . . . . 9
⊢ (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎 ∈ ℤ ↔ ((𝑁 + 1) − 𝑏) ∈ ℤ)) |
64 | | breq1 5084 |
. . . . . . . . 9
⊢ (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎 ≤ 𝑁 ↔ ((𝑁 + 1) − 𝑏) ≤ 𝑁)) |
65 | 63, 64 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ↔ (((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁))) |
66 | | oveq2 7315 |
. . . . . . . . 9
⊢ (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑁 + 1) − 𝑎) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))) |
67 | 66 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑏 = ((𝑁 + 1) − 𝑎) ↔ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))) |
68 | 65, 67 | anbi12d 632 |
. . . . . . 7
⊢ (𝑎 = ((𝑁 + 1) − 𝑏) → (((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))) |
69 | 68 | ad2antll 727 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤
𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → (((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))) |
70 | 62, 69 | mpbird 257 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤
𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) |
71 | 40, 70 | impbida 799 |
. . . 4
⊢ (𝑁 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)))) |
72 | | ellz1 40626 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖
(ℤ≥‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁))) |
73 | 72 | anbi1d 631 |
. . . 4
⊢ (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)))) |
74 | | elnnz1 12392 |
. . . . . 6
⊢ (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏)) |
75 | 74 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤
𝑏))) |
76 | 75 | anbi1d 631 |
. . . 4
⊢ (𝑁 ∈ ℤ → ((𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)))) |
77 | 71, 73, 76 | 3bitr4d 311 |
. . 3
⊢ (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ (𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏)))) |
78 | 3, 5, 7, 9, 77 | en2d 8809 |
. 2
⊢ (𝑁 ∈ ℤ → (ℤ
∖ (ℤ≥‘(𝑁 + 1))) ≈ ℕ) |
79 | | nnenom 13746 |
. 2
⊢ ℕ
≈ ω |
80 | | entr 8827 |
. 2
⊢
(((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ≈ ℕ ∧ ℕ
≈ ω) → (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ≈
ω) |
81 | 78, 79, 80 | sylancl 587 |
1
⊢ (𝑁 ∈ ℤ → (ℤ
∖ (ℤ≥‘(𝑁 + 1))) ≈ ω) |