Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzenom Structured version   Visualization version   GIF version

Theorem lzenom 40629
Description: Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
lzenom (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)

Proof of Theorem lzenom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12374 . . . 4 ℤ ∈ V
2 difexg 5260 . . . 4 (ℤ ∈ V → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
31, 2mp1i 13 . . 3 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
4 nnex 12025 . . . 4 ℕ ∈ V
54a1i 11 . . 3 (𝑁 ∈ ℤ → ℕ ∈ V)
6 ovex 7340 . . . 4 ((𝑁 + 1) − 𝑎) ∈ V
762a1i 12 . . 3 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 𝑎) ∈ V))
8 ovex 7340 . . . 4 ((𝑁 + 1) − 𝑏) ∈ V
982a1i 12 . . 3 (𝑁 ∈ ℤ → (𝑏 ∈ ℕ → ((𝑁 + 1) − 𝑏) ∈ V))
10 simpl 484 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑁 ∈ ℤ)
1110peano2zd 12475 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℤ)
12 simprl 769 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℤ)
1311, 12zsubcld 12477 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − 𝑎) ∈ ℤ)
14 zre 12369 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
1514ad2antrl 726 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℝ)
1611zred 12472 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℝ)
17 1red 11022 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 1 ∈ ℝ)
18 simprr 771 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎𝑁)
19 zcn 12370 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2019adantr 482 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑁 ∈ ℂ)
21 ax-1cn 10975 . . . . . . . . . . 11 1 ∈ ℂ
22 pncan 11273 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
2320, 21, 22sylancl 587 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − 1) = 𝑁)
2418, 23breqtrrd 5109 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ≤ ((𝑁 + 1) − 1))
2515, 16, 17, 24lesubd 11625 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 1 ≤ ((𝑁 + 1) − 𝑎))
2611zcnd 12473 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℂ)
27 zcn 12370 . . . . . . . . . . 11 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
2827ad2antrl 726 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℂ)
2926, 28nncand 11383 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)) = 𝑎)
3029eqcomd 2742 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))
3113, 25, 30jca31 516 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
3231adantrr 715 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
33 eleq1 2824 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑏 ∈ ℤ ↔ ((𝑁 + 1) − 𝑎) ∈ ℤ))
34 breq2 5085 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → (1 ≤ 𝑏 ↔ 1 ≤ ((𝑁 + 1) − 𝑎)))
3533, 34anbi12d 632 . . . . . . . 8 (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ↔ (((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎))))
36 oveq2 7315 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑁 + 1) − 𝑏) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))
3736eqeq2d 2747 . . . . . . . 8 (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑎 = ((𝑁 + 1) − 𝑏) ↔ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
3835, 37anbi12d 632 . . . . . . 7 (𝑏 = ((𝑁 + 1) − 𝑎) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))))
3938ad2antll 727 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))))
4032, 39mpbird 257 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)))
41 simpl 484 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℤ)
4241peano2zd 12475 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℤ)
43 simprl 769 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℤ)
4442, 43zsubcld 12477 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑏) ∈ ℤ)
4542zred 12472 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℝ)
46 zre 12369 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4746adantr 482 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℝ)
48 zre 12369 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
4948ad2antrl 726 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℝ)
5047recnd 11049 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℂ)
51 pncan2 11274 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 𝑁) = 1)
5250, 21, 51sylancl 587 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑁) = 1)
53 simprr 771 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 1 ≤ 𝑏)
5452, 53eqbrtrd 5103 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑁) ≤ 𝑏)
5545, 47, 49, 54subled 11624 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑏) ≤ 𝑁)
5642zcnd 12473 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℂ)
57 zcn 12370 . . . . . . . . . . 11 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
5857ad2antrl 726 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℂ)
5956, 58nncand 11383 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)) = 𝑏)
6059eqcomd 2742 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))
6144, 55, 60jca31 516 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
6261adantrr 715 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
63 eleq1 2824 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎 ∈ ℤ ↔ ((𝑁 + 1) − 𝑏) ∈ ℤ))
64 breq1 5084 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎𝑁 ↔ ((𝑁 + 1) − 𝑏) ≤ 𝑁))
6563, 64anbi12d 632 . . . . . . . 8 (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ↔ (((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁)))
66 oveq2 7315 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑁 + 1) − 𝑎) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))
6766eqeq2d 2747 . . . . . . . 8 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑏 = ((𝑁 + 1) − 𝑎) ↔ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
6865, 67anbi12d 632 . . . . . . 7 (𝑎 = ((𝑁 + 1) − 𝑏) → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))))
6968ad2antll 727 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))))
7062, 69mpbird 257 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)))
7140, 70impbida 799 . . . 4 (𝑁 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
72 ellz1 40626 . . . . 5 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
7372anbi1d 631 . . . 4 (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))))
74 elnnz1 12392 . . . . . 6 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏))
7574a1i 11 . . . . 5 (𝑁 ∈ ℤ → (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)))
7675anbi1d 631 . . . 4 (𝑁 ∈ ℤ → ((𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
7771, 73, 763bitr4d 311 . . 3 (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ (𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
783, 5, 7, 9, 77en2d 8809 . 2 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ℕ)
79 nnenom 13746 . 2 ℕ ≈ ω
80 entr 8827 . 2 (((ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ℕ ∧ ℕ ≈ ω) → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
8178, 79, 80sylancl 587 1 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  cdif 3889   class class class wbr 5081  cfv 6458  (class class class)co 7307  ωcom 7744  cen 8761  cc 10915  cr 10916  1c1 10918   + caddc 10920  cle 11056  cmin 11251  cn 12019  cz 12365  cuz 12628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629
This theorem is referenced by:  diophin  40631  diophren  40672
  Copyright terms: Public domain W3C validator