Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzenom Structured version   Visualization version   GIF version

Theorem lzenom 42193
Description: Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
lzenom (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)

Proof of Theorem lzenom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12603 . . . 4 ℤ ∈ V
2 difexg 5331 . . . 4 (ℤ ∈ V → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
31, 2mp1i 13 . . 3 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
4 nnex 12254 . . . 4 ℕ ∈ V
54a1i 11 . . 3 (𝑁 ∈ ℤ → ℕ ∈ V)
6 ovex 7457 . . . 4 ((𝑁 + 1) − 𝑎) ∈ V
762a1i 12 . . 3 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 𝑎) ∈ V))
8 ovex 7457 . . . 4 ((𝑁 + 1) − 𝑏) ∈ V
982a1i 12 . . 3 (𝑁 ∈ ℤ → (𝑏 ∈ ℕ → ((𝑁 + 1) − 𝑏) ∈ V))
10 simpl 481 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑁 ∈ ℤ)
1110peano2zd 12705 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℤ)
12 simprl 769 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℤ)
1311, 12zsubcld 12707 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − 𝑎) ∈ ℤ)
14 zre 12598 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
1514ad2antrl 726 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℝ)
1611zred 12702 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℝ)
17 1red 11251 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 1 ∈ ℝ)
18 simprr 771 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎𝑁)
19 zcn 12599 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2019adantr 479 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑁 ∈ ℂ)
21 ax-1cn 11202 . . . . . . . . . . 11 1 ∈ ℂ
22 pncan 11502 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
2320, 21, 22sylancl 584 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − 1) = 𝑁)
2418, 23breqtrrd 5178 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ≤ ((𝑁 + 1) − 1))
2515, 16, 17, 24lesubd 11854 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 1 ≤ ((𝑁 + 1) − 𝑎))
2611zcnd 12703 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℂ)
27 zcn 12599 . . . . . . . . . . 11 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
2827ad2antrl 726 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℂ)
2926, 28nncand 11612 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)) = 𝑎)
3029eqcomd 2733 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))
3113, 25, 30jca31 513 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
3231adantrr 715 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
33 eleq1 2816 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑏 ∈ ℤ ↔ ((𝑁 + 1) − 𝑎) ∈ ℤ))
34 breq2 5154 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → (1 ≤ 𝑏 ↔ 1 ≤ ((𝑁 + 1) − 𝑎)))
3533, 34anbi12d 630 . . . . . . . 8 (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ↔ (((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎))))
36 oveq2 7432 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑁 + 1) − 𝑏) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))
3736eqeq2d 2738 . . . . . . . 8 (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑎 = ((𝑁 + 1) − 𝑏) ↔ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
3835, 37anbi12d 630 . . . . . . 7 (𝑏 = ((𝑁 + 1) − 𝑎) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))))
3938ad2antll 727 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))))
4032, 39mpbird 256 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)))
41 simpl 481 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℤ)
4241peano2zd 12705 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℤ)
43 simprl 769 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℤ)
4442, 43zsubcld 12707 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑏) ∈ ℤ)
4542zred 12702 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℝ)
46 zre 12598 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4746adantr 479 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℝ)
48 zre 12598 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
4948ad2antrl 726 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℝ)
5047recnd 11278 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℂ)
51 pncan2 11503 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 𝑁) = 1)
5250, 21, 51sylancl 584 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑁) = 1)
53 simprr 771 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 1 ≤ 𝑏)
5452, 53eqbrtrd 5172 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑁) ≤ 𝑏)
5545, 47, 49, 54subled 11853 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑏) ≤ 𝑁)
5642zcnd 12703 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℂ)
57 zcn 12599 . . . . . . . . . . 11 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
5857ad2antrl 726 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℂ)
5956, 58nncand 11612 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)) = 𝑏)
6059eqcomd 2733 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))
6144, 55, 60jca31 513 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
6261adantrr 715 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
63 eleq1 2816 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎 ∈ ℤ ↔ ((𝑁 + 1) − 𝑏) ∈ ℤ))
64 breq1 5153 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎𝑁 ↔ ((𝑁 + 1) − 𝑏) ≤ 𝑁))
6563, 64anbi12d 630 . . . . . . . 8 (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ↔ (((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁)))
66 oveq2 7432 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑁 + 1) − 𝑎) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))
6766eqeq2d 2738 . . . . . . . 8 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑏 = ((𝑁 + 1) − 𝑎) ↔ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
6865, 67anbi12d 630 . . . . . . 7 (𝑎 = ((𝑁 + 1) − 𝑏) → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))))
6968ad2antll 727 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))))
7062, 69mpbird 256 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)))
7140, 70impbida 799 . . . 4 (𝑁 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
72 ellz1 42190 . . . . 5 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
7372anbi1d 629 . . . 4 (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))))
74 elnnz1 12624 . . . . . 6 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏))
7574a1i 11 . . . . 5 (𝑁 ∈ ℤ → (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)))
7675anbi1d 629 . . . 4 (𝑁 ∈ ℤ → ((𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
7771, 73, 763bitr4d 310 . . 3 (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ (𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
783, 5, 7, 9, 77en2d 9013 . 2 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ℕ)
79 nnenom 13983 . 2 ℕ ≈ ω
80 entr 9031 . 2 (((ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ℕ ∧ ℕ ≈ ω) → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
8178, 79, 80sylancl 584 1 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3471  cdif 3944   class class class wbr 5150  cfv 6551  (class class class)co 7424  ωcom 7874  cen 8965  cc 11142  cr 11143  1c1 11145   + caddc 11147  cle 11285  cmin 11480  cn 12248  cz 12594  cuz 12858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859
This theorem is referenced by:  diophin  42195  diophren  42236
  Copyright terms: Public domain W3C validator