MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicsubgen Structured version   Visualization version   GIF version

Theorem gicsubgen 18413
Description: A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
gicsubgen (𝑅𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))

Proof of Theorem gicsubgen
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgic 18404 . . 3 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 n0 4263 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆))
31, 2bitri 278 . 2 (𝑅𝑔 𝑆 ↔ ∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆))
4 fvexd 6664 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ∈ V)
5 fvexd 6664 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑆) ∈ V)
6 vex 3447 . . . . . 6 𝑎 ∈ V
76imaex 7607 . . . . 5 (𝑎𝑏) ∈ V
872a1i 12 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (𝑏 ∈ (SubGrp‘𝑅) → (𝑎𝑏) ∈ V))
96cnvex 7616 . . . . . 6 𝑎 ∈ V
109imaex 7607 . . . . 5 (𝑎𝑐) ∈ V
11102a1i 12 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (𝑐 ∈ (SubGrp‘𝑆) → (𝑎𝑐) ∈ V))
12 gimghm 18399 . . . . . . . . 9 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎 ∈ (𝑅 GrpHom 𝑆))
13 ghmima 18374 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎𝑏) ∈ (SubGrp‘𝑆))
1412, 13sylan 583 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎𝑏) ∈ (SubGrp‘𝑆))
15 eqid 2801 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2801 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
1715, 16gimf1o 18398 . . . . . . . . . . 11 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
18 f1of1 6593 . . . . . . . . . . 11 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–1-1→(Base‘𝑆))
1917, 18syl 17 . . . . . . . . . 10 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–1-1→(Base‘𝑆))
2015subgss 18275 . . . . . . . . . 10 (𝑏 ∈ (SubGrp‘𝑅) → 𝑏 ⊆ (Base‘𝑅))
21 f1imacnv 6610 . . . . . . . . . 10 ((𝑎:(Base‘𝑅)–1-1→(Base‘𝑆) ∧ 𝑏 ⊆ (Base‘𝑅)) → (𝑎 “ (𝑎𝑏)) = 𝑏)
2219, 20, 21syl2an 598 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎 “ (𝑎𝑏)) = 𝑏)
2322eqcomd 2807 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → 𝑏 = (𝑎 “ (𝑎𝑏)))
2414, 23jca 515 . . . . . . 7 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → ((𝑎𝑏) ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎 “ (𝑎𝑏))))
25 eleq1 2880 . . . . . . . 8 (𝑐 = (𝑎𝑏) → (𝑐 ∈ (SubGrp‘𝑆) ↔ (𝑎𝑏) ∈ (SubGrp‘𝑆)))
26 imaeq2 5896 . . . . . . . . 9 (𝑐 = (𝑎𝑏) → (𝑎𝑐) = (𝑎 “ (𝑎𝑏)))
2726eqeq2d 2812 . . . . . . . 8 (𝑐 = (𝑎𝑏) → (𝑏 = (𝑎𝑐) ↔ 𝑏 = (𝑎 “ (𝑎𝑏))))
2825, 27anbi12d 633 . . . . . . 7 (𝑐 = (𝑎𝑏) → ((𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐)) ↔ ((𝑎𝑏) ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎 “ (𝑎𝑏)))))
2924, 28syl5ibrcom 250 . . . . . 6 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑐 = (𝑎𝑏) → (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))))
3029impr 458 . . . . 5 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏))) → (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐)))
31 ghmpreima 18375 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎𝑐) ∈ (SubGrp‘𝑅))
3212, 31sylan 583 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎𝑐) ∈ (SubGrp‘𝑅))
33 f1ofo 6601 . . . . . . . . . . 11 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆))
3417, 33syl 17 . . . . . . . . . 10 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆))
3516subgss 18275 . . . . . . . . . 10 (𝑐 ∈ (SubGrp‘𝑆) → 𝑐 ⊆ (Base‘𝑆))
36 foimacnv 6611 . . . . . . . . . 10 ((𝑎:(Base‘𝑅)–onto→(Base‘𝑆) ∧ 𝑐 ⊆ (Base‘𝑆)) → (𝑎 “ (𝑎𝑐)) = 𝑐)
3734, 35, 36syl2an 598 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎 “ (𝑎𝑐)) = 𝑐)
3837eqcomd 2807 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → 𝑐 = (𝑎 “ (𝑎𝑐)))
3932, 38jca 515 . . . . . . 7 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → ((𝑎𝑐) ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎 “ (𝑎𝑐))))
40 eleq1 2880 . . . . . . . 8 (𝑏 = (𝑎𝑐) → (𝑏 ∈ (SubGrp‘𝑅) ↔ (𝑎𝑐) ∈ (SubGrp‘𝑅)))
41 imaeq2 5896 . . . . . . . . 9 (𝑏 = (𝑎𝑐) → (𝑎𝑏) = (𝑎 “ (𝑎𝑐)))
4241eqeq2d 2812 . . . . . . . 8 (𝑏 = (𝑎𝑐) → (𝑐 = (𝑎𝑏) ↔ 𝑐 = (𝑎 “ (𝑎𝑐))))
4340, 42anbi12d 633 . . . . . . 7 (𝑏 = (𝑎𝑐) → ((𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)) ↔ ((𝑎𝑐) ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎 “ (𝑎𝑐)))))
4439, 43syl5ibrcom 250 . . . . . 6 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑏 = (𝑎𝑐) → (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏))))
4544impr 458 . . . . 5 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))) → (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)))
4630, 45impbida 800 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → ((𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)) ↔ (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))))
474, 5, 8, 11, 46en2d 8532 . . 3 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
4847exlimiv 1931 . 2 (∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
493, 48sylbi 220 1 (𝑅𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2112  wne 2990  Vcvv 3444  wss 3884  c0 4246   class class class wbr 5033  ccnv 5522  cima 5526  1-1wf1 6325  ontowfo 6326  1-1-ontowf1o 6327  cfv 6328  (class class class)co 7139  cen 8493  Basecbs 16478  SubGrpcsubg 18268   GrpHom cghm 18350   GrpIso cgim 18392  𝑔 cgic 18393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-subg 18271  df-ghm 18351  df-gim 18394  df-gic 18395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator