MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicsubgen Structured version   Visualization version   GIF version

Theorem gicsubgen 18809
Description: A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
gicsubgen (𝑅𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))

Proof of Theorem gicsubgen
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgic 18800 . . 3 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 n0 4277 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆))
31, 2bitri 274 . 2 (𝑅𝑔 𝑆 ↔ ∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆))
4 fvexd 6771 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ∈ V)
5 fvexd 6771 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑆) ∈ V)
6 vex 3426 . . . . . 6 𝑎 ∈ V
76imaex 7737 . . . . 5 (𝑎𝑏) ∈ V
872a1i 12 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (𝑏 ∈ (SubGrp‘𝑅) → (𝑎𝑏) ∈ V))
96cnvex 7746 . . . . . 6 𝑎 ∈ V
109imaex 7737 . . . . 5 (𝑎𝑐) ∈ V
11102a1i 12 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (𝑐 ∈ (SubGrp‘𝑆) → (𝑎𝑐) ∈ V))
12 gimghm 18795 . . . . . . . . 9 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎 ∈ (𝑅 GrpHom 𝑆))
13 ghmima 18770 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎𝑏) ∈ (SubGrp‘𝑆))
1412, 13sylan 579 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎𝑏) ∈ (SubGrp‘𝑆))
15 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
1715, 16gimf1o 18794 . . . . . . . . . . 11 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
18 f1of1 6699 . . . . . . . . . . 11 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–1-1→(Base‘𝑆))
1917, 18syl 17 . . . . . . . . . 10 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–1-1→(Base‘𝑆))
2015subgss 18671 . . . . . . . . . 10 (𝑏 ∈ (SubGrp‘𝑅) → 𝑏 ⊆ (Base‘𝑅))
21 f1imacnv 6716 . . . . . . . . . 10 ((𝑎:(Base‘𝑅)–1-1→(Base‘𝑆) ∧ 𝑏 ⊆ (Base‘𝑅)) → (𝑎 “ (𝑎𝑏)) = 𝑏)
2219, 20, 21syl2an 595 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎 “ (𝑎𝑏)) = 𝑏)
2322eqcomd 2744 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → 𝑏 = (𝑎 “ (𝑎𝑏)))
2414, 23jca 511 . . . . . . 7 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → ((𝑎𝑏) ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎 “ (𝑎𝑏))))
25 eleq1 2826 . . . . . . . 8 (𝑐 = (𝑎𝑏) → (𝑐 ∈ (SubGrp‘𝑆) ↔ (𝑎𝑏) ∈ (SubGrp‘𝑆)))
26 imaeq2 5954 . . . . . . . . 9 (𝑐 = (𝑎𝑏) → (𝑎𝑐) = (𝑎 “ (𝑎𝑏)))
2726eqeq2d 2749 . . . . . . . 8 (𝑐 = (𝑎𝑏) → (𝑏 = (𝑎𝑐) ↔ 𝑏 = (𝑎 “ (𝑎𝑏))))
2825, 27anbi12d 630 . . . . . . 7 (𝑐 = (𝑎𝑏) → ((𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐)) ↔ ((𝑎𝑏) ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎 “ (𝑎𝑏)))))
2924, 28syl5ibrcom 246 . . . . . 6 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑐 = (𝑎𝑏) → (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))))
3029impr 454 . . . . 5 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏))) → (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐)))
31 ghmpreima 18771 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎𝑐) ∈ (SubGrp‘𝑅))
3212, 31sylan 579 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎𝑐) ∈ (SubGrp‘𝑅))
33 f1ofo 6707 . . . . . . . . . . 11 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆))
3417, 33syl 17 . . . . . . . . . 10 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆))
3516subgss 18671 . . . . . . . . . 10 (𝑐 ∈ (SubGrp‘𝑆) → 𝑐 ⊆ (Base‘𝑆))
36 foimacnv 6717 . . . . . . . . . 10 ((𝑎:(Base‘𝑅)–onto→(Base‘𝑆) ∧ 𝑐 ⊆ (Base‘𝑆)) → (𝑎 “ (𝑎𝑐)) = 𝑐)
3734, 35, 36syl2an 595 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎 “ (𝑎𝑐)) = 𝑐)
3837eqcomd 2744 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → 𝑐 = (𝑎 “ (𝑎𝑐)))
3932, 38jca 511 . . . . . . 7 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → ((𝑎𝑐) ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎 “ (𝑎𝑐))))
40 eleq1 2826 . . . . . . . 8 (𝑏 = (𝑎𝑐) → (𝑏 ∈ (SubGrp‘𝑅) ↔ (𝑎𝑐) ∈ (SubGrp‘𝑅)))
41 imaeq2 5954 . . . . . . . . 9 (𝑏 = (𝑎𝑐) → (𝑎𝑏) = (𝑎 “ (𝑎𝑐)))
4241eqeq2d 2749 . . . . . . . 8 (𝑏 = (𝑎𝑐) → (𝑐 = (𝑎𝑏) ↔ 𝑐 = (𝑎 “ (𝑎𝑐))))
4340, 42anbi12d 630 . . . . . . 7 (𝑏 = (𝑎𝑐) → ((𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)) ↔ ((𝑎𝑐) ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎 “ (𝑎𝑐)))))
4439, 43syl5ibrcom 246 . . . . . 6 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑏 = (𝑎𝑐) → (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏))))
4544impr 454 . . . . 5 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))) → (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)))
4630, 45impbida 797 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → ((𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)) ↔ (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))))
474, 5, 8, 11, 46en2d 8731 . . 3 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
4847exlimiv 1934 . 2 (∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
493, 48sylbi 216 1 (𝑅𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  Vcvv 3422  wss 3883  c0 4253   class class class wbr 5070  ccnv 5579  cima 5583  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cen 8688  Basecbs 16840  SubGrpcsubg 18664   GrpHom cghm 18746   GrpIso cgim 18788  𝑔 cgic 18789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-ghm 18747  df-gim 18790  df-gic 18791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator