MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicsubgen Structured version   Visualization version   GIF version

Theorem gicsubgen 19146
Description: A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
gicsubgen (𝑅𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))

Proof of Theorem gicsubgen
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgic 19137 . . 3 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 n0 4345 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆))
31, 2bitri 274 . 2 (𝑅𝑔 𝑆 ↔ ∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆))
4 fvexd 6903 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ∈ V)
5 fvexd 6903 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑆) ∈ V)
6 vex 3478 . . . . . 6 𝑎 ∈ V
76imaex 7903 . . . . 5 (𝑎𝑏) ∈ V
872a1i 12 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (𝑏 ∈ (SubGrp‘𝑅) → (𝑎𝑏) ∈ V))
96cnvex 7912 . . . . . 6 𝑎 ∈ V
109imaex 7903 . . . . 5 (𝑎𝑐) ∈ V
11102a1i 12 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (𝑐 ∈ (SubGrp‘𝑆) → (𝑎𝑐) ∈ V))
12 gimghm 19132 . . . . . . . . 9 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎 ∈ (𝑅 GrpHom 𝑆))
13 ghmima 19107 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎𝑏) ∈ (SubGrp‘𝑆))
1412, 13sylan 580 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎𝑏) ∈ (SubGrp‘𝑆))
15 eqid 2732 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2732 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
1715, 16gimf1o 19131 . . . . . . . . . . 11 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
18 f1of1 6829 . . . . . . . . . . 11 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–1-1→(Base‘𝑆))
1917, 18syl 17 . . . . . . . . . 10 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–1-1→(Base‘𝑆))
2015subgss 19001 . . . . . . . . . 10 (𝑏 ∈ (SubGrp‘𝑅) → 𝑏 ⊆ (Base‘𝑅))
21 f1imacnv 6846 . . . . . . . . . 10 ((𝑎:(Base‘𝑅)–1-1→(Base‘𝑆) ∧ 𝑏 ⊆ (Base‘𝑅)) → (𝑎 “ (𝑎𝑏)) = 𝑏)
2219, 20, 21syl2an 596 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎 “ (𝑎𝑏)) = 𝑏)
2322eqcomd 2738 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → 𝑏 = (𝑎 “ (𝑎𝑏)))
2414, 23jca 512 . . . . . . 7 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → ((𝑎𝑏) ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎 “ (𝑎𝑏))))
25 eleq1 2821 . . . . . . . 8 (𝑐 = (𝑎𝑏) → (𝑐 ∈ (SubGrp‘𝑆) ↔ (𝑎𝑏) ∈ (SubGrp‘𝑆)))
26 imaeq2 6053 . . . . . . . . 9 (𝑐 = (𝑎𝑏) → (𝑎𝑐) = (𝑎 “ (𝑎𝑏)))
2726eqeq2d 2743 . . . . . . . 8 (𝑐 = (𝑎𝑏) → (𝑏 = (𝑎𝑐) ↔ 𝑏 = (𝑎 “ (𝑎𝑏))))
2825, 27anbi12d 631 . . . . . . 7 (𝑐 = (𝑎𝑏) → ((𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐)) ↔ ((𝑎𝑏) ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎 “ (𝑎𝑏)))))
2924, 28syl5ibrcom 246 . . . . . 6 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑐 = (𝑎𝑏) → (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))))
3029impr 455 . . . . 5 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏))) → (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐)))
31 ghmpreima 19108 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎𝑐) ∈ (SubGrp‘𝑅))
3212, 31sylan 580 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎𝑐) ∈ (SubGrp‘𝑅))
33 f1ofo 6837 . . . . . . . . . . 11 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆))
3417, 33syl 17 . . . . . . . . . 10 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆))
3516subgss 19001 . . . . . . . . . 10 (𝑐 ∈ (SubGrp‘𝑆) → 𝑐 ⊆ (Base‘𝑆))
36 foimacnv 6847 . . . . . . . . . 10 ((𝑎:(Base‘𝑅)–onto→(Base‘𝑆) ∧ 𝑐 ⊆ (Base‘𝑆)) → (𝑎 “ (𝑎𝑐)) = 𝑐)
3734, 35, 36syl2an 596 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎 “ (𝑎𝑐)) = 𝑐)
3837eqcomd 2738 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → 𝑐 = (𝑎 “ (𝑎𝑐)))
3932, 38jca 512 . . . . . . 7 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → ((𝑎𝑐) ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎 “ (𝑎𝑐))))
40 eleq1 2821 . . . . . . . 8 (𝑏 = (𝑎𝑐) → (𝑏 ∈ (SubGrp‘𝑅) ↔ (𝑎𝑐) ∈ (SubGrp‘𝑅)))
41 imaeq2 6053 . . . . . . . . 9 (𝑏 = (𝑎𝑐) → (𝑎𝑏) = (𝑎 “ (𝑎𝑐)))
4241eqeq2d 2743 . . . . . . . 8 (𝑏 = (𝑎𝑐) → (𝑐 = (𝑎𝑏) ↔ 𝑐 = (𝑎 “ (𝑎𝑐))))
4340, 42anbi12d 631 . . . . . . 7 (𝑏 = (𝑎𝑐) → ((𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)) ↔ ((𝑎𝑐) ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎 “ (𝑎𝑐)))))
4439, 43syl5ibrcom 246 . . . . . 6 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑏 = (𝑎𝑐) → (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏))))
4544impr 455 . . . . 5 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))) → (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)))
4630, 45impbida 799 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → ((𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)) ↔ (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))))
474, 5, 8, 11, 46en2d 8980 . . 3 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
4847exlimiv 1933 . 2 (∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
493, 48sylbi 216 1 (𝑅𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  Vcvv 3474  wss 3947  c0 4321   class class class wbr 5147  ccnv 5674  cima 5678  1-1wf1 6537  ontowfo 6538  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  cen 8932  Basecbs 17140  SubGrpcsubg 18994   GrpHom cghm 19083   GrpIso cgim 19125  𝑔 cgic 19126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-subg 18997  df-ghm 19084  df-gim 19127  df-gic 19128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator