MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicsubgen Structured version   Visualization version   GIF version

Theorem gicsubgen 18991
Description: A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
gicsubgen (𝑅𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))

Proof of Theorem gicsubgen
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgic 18982 . . 3 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 n0 4294 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆))
31, 2bitri 274 . 2 (𝑅𝑔 𝑆 ↔ ∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆))
4 fvexd 6841 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ∈ V)
5 fvexd 6841 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑆) ∈ V)
6 vex 3445 . . . . . 6 𝑎 ∈ V
76imaex 7832 . . . . 5 (𝑎𝑏) ∈ V
872a1i 12 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (𝑏 ∈ (SubGrp‘𝑅) → (𝑎𝑏) ∈ V))
96cnvex 7841 . . . . . 6 𝑎 ∈ V
109imaex 7832 . . . . 5 (𝑎𝑐) ∈ V
11102a1i 12 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (𝑐 ∈ (SubGrp‘𝑆) → (𝑎𝑐) ∈ V))
12 gimghm 18977 . . . . . . . . 9 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎 ∈ (𝑅 GrpHom 𝑆))
13 ghmima 18952 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎𝑏) ∈ (SubGrp‘𝑆))
1412, 13sylan 580 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎𝑏) ∈ (SubGrp‘𝑆))
15 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
1715, 16gimf1o 18976 . . . . . . . . . . 11 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
18 f1of1 6767 . . . . . . . . . . 11 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–1-1→(Base‘𝑆))
1917, 18syl 17 . . . . . . . . . 10 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–1-1→(Base‘𝑆))
2015subgss 18853 . . . . . . . . . 10 (𝑏 ∈ (SubGrp‘𝑅) → 𝑏 ⊆ (Base‘𝑅))
21 f1imacnv 6784 . . . . . . . . . 10 ((𝑎:(Base‘𝑅)–1-1→(Base‘𝑆) ∧ 𝑏 ⊆ (Base‘𝑅)) → (𝑎 “ (𝑎𝑏)) = 𝑏)
2219, 20, 21syl2an 596 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑎 “ (𝑎𝑏)) = 𝑏)
2322eqcomd 2742 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → 𝑏 = (𝑎 “ (𝑎𝑏)))
2414, 23jca 512 . . . . . . 7 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → ((𝑎𝑏) ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎 “ (𝑎𝑏))))
25 eleq1 2824 . . . . . . . 8 (𝑐 = (𝑎𝑏) → (𝑐 ∈ (SubGrp‘𝑆) ↔ (𝑎𝑏) ∈ (SubGrp‘𝑆)))
26 imaeq2 5996 . . . . . . . . 9 (𝑐 = (𝑎𝑏) → (𝑎𝑐) = (𝑎 “ (𝑎𝑏)))
2726eqeq2d 2747 . . . . . . . 8 (𝑐 = (𝑎𝑏) → (𝑏 = (𝑎𝑐) ↔ 𝑏 = (𝑎 “ (𝑎𝑏))))
2825, 27anbi12d 631 . . . . . . 7 (𝑐 = (𝑎𝑏) → ((𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐)) ↔ ((𝑎𝑏) ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎 “ (𝑎𝑏)))))
2924, 28syl5ibrcom 246 . . . . . 6 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑏 ∈ (SubGrp‘𝑅)) → (𝑐 = (𝑎𝑏) → (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))))
3029impr 455 . . . . 5 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏))) → (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐)))
31 ghmpreima 18953 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎𝑐) ∈ (SubGrp‘𝑅))
3212, 31sylan 580 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎𝑐) ∈ (SubGrp‘𝑅))
33 f1ofo 6775 . . . . . . . . . . 11 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆))
3417, 33syl 17 . . . . . . . . . 10 (𝑎 ∈ (𝑅 GrpIso 𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆))
3516subgss 18853 . . . . . . . . . 10 (𝑐 ∈ (SubGrp‘𝑆) → 𝑐 ⊆ (Base‘𝑆))
36 foimacnv 6785 . . . . . . . . . 10 ((𝑎:(Base‘𝑅)–onto→(Base‘𝑆) ∧ 𝑐 ⊆ (Base‘𝑆)) → (𝑎 “ (𝑎𝑐)) = 𝑐)
3734, 35, 36syl2an 596 . . . . . . . . 9 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑎 “ (𝑎𝑐)) = 𝑐)
3837eqcomd 2742 . . . . . . . 8 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → 𝑐 = (𝑎 “ (𝑎𝑐)))
3932, 38jca 512 . . . . . . 7 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → ((𝑎𝑐) ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎 “ (𝑎𝑐))))
40 eleq1 2824 . . . . . . . 8 (𝑏 = (𝑎𝑐) → (𝑏 ∈ (SubGrp‘𝑅) ↔ (𝑎𝑐) ∈ (SubGrp‘𝑅)))
41 imaeq2 5996 . . . . . . . . 9 (𝑏 = (𝑎𝑐) → (𝑎𝑏) = (𝑎 “ (𝑎𝑐)))
4241eqeq2d 2747 . . . . . . . 8 (𝑏 = (𝑎𝑐) → (𝑐 = (𝑎𝑏) ↔ 𝑐 = (𝑎 “ (𝑎𝑐))))
4340, 42anbi12d 631 . . . . . . 7 (𝑏 = (𝑎𝑐) → ((𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)) ↔ ((𝑎𝑐) ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎 “ (𝑎𝑐)))))
4439, 43syl5ibrcom 246 . . . . . 6 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑐 ∈ (SubGrp‘𝑆)) → (𝑏 = (𝑎𝑐) → (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏))))
4544impr 455 . . . . 5 ((𝑎 ∈ (𝑅 GrpIso 𝑆) ∧ (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))) → (𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)))
4630, 45impbida 798 . . . 4 (𝑎 ∈ (𝑅 GrpIso 𝑆) → ((𝑏 ∈ (SubGrp‘𝑅) ∧ 𝑐 = (𝑎𝑏)) ↔ (𝑐 ∈ (SubGrp‘𝑆) ∧ 𝑏 = (𝑎𝑐))))
474, 5, 8, 11, 46en2d 8850 . . 3 (𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
4847exlimiv 1932 . 2 (∃𝑎 𝑎 ∈ (𝑅 GrpIso 𝑆) → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
493, 48sylbi 216 1 (𝑅𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wex 1780  wcel 2105  wne 2940  Vcvv 3441  wss 3898  c0 4270   class class class wbr 5093  ccnv 5620  cima 5624  1-1wf1 6477  ontowfo 6478  1-1-ontowf1o 6479  cfv 6480  (class class class)co 7338  cen 8802  Basecbs 17010  SubGrpcsubg 18846   GrpHom cghm 18928   GrpIso cgim 18970  𝑔 cgic 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-2 12138  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-grp 18677  df-minusg 18678  df-subg 18849  df-ghm 18929  df-gim 18972  df-gic 18973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator