| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domrefg | Structured version Visualization version GIF version | ||
| Description: Dominance is reflexive. (Contributed by NM, 18-Jun-1998.) |
| Ref | Expression |
|---|---|
| domrefg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 8998 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
| 2 | endom 8993 | . 2 ⊢ (𝐴 ≈ 𝐴 → 𝐴 ≼ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 ≈ cen 8956 ≼ cdom 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-en 8960 df-dom 8961 |
| This theorem is referenced by: cardprclem 9993 indcardi 10055 djudom1 10197 infdif 10222 alephexp2 10595 pwcfsdom 10597 alephom 10599 iunctb2 37421 safesnsupfidom1o 43441 sn1dom 43550 fvconstdomi 48867 indthincALT 49349 |
| Copyright terms: Public domain | W3C validator |