MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domrefg Structured version   Visualization version   GIF version

Theorem domrefg 8961
Description: Dominance is reflexive. (Contributed by NM, 18-Jun-1998.)
Assertion
Ref Expression
domrefg (𝐴𝑉𝐴𝐴)

Proof of Theorem domrefg
StepHypRef Expression
1 enrefg 8958 . 2 (𝐴𝑉𝐴𝐴)
2 endom 8953 . 2 (𝐴𝐴𝐴𝐴)
31, 2syl 17 1 (𝐴𝑉𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5110  cen 8918  cdom 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-en 8922  df-dom 8923
This theorem is referenced by:  cardprclem  9939  indcardi  10001  djudom1  10143  infdif  10168  alephexp2  10541  pwcfsdom  10543  alephom  10545  iunctb2  37398  safesnsupfidom1o  43413  sn1dom  43522  fvconstdomi  48884  indthincALT  49456
  Copyright terms: Public domain W3C validator