MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snmapen Structured version   Visualization version   GIF version

Theorem snmapen 8970
Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003.) (Revised by AV, 17-Jul-2022.)
Assertion
Ref Expression
snmapen ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴})

Proof of Theorem snmapen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7390 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ∈ V)
2 snex 5378 . . 3 {𝐴} ∈ V
32a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} ∈ V)
4 simpl 482 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
54a1d 25 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) → 𝐴𝑉))
62a1i 11 . . . . 5 (𝐴𝑉 → {𝐴} ∈ V)
76anim1ci 616 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵𝑊 ∧ {𝐴} ∈ V))
8 xpexg 7692 . . . 4 ((𝐵𝑊 ∧ {𝐴} ∈ V) → (𝐵 × {𝐴}) ∈ V)
97, 8syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝐴}) ∈ V)
109a1d 25 . 2 ((𝐴𝑉𝐵𝑊) → (𝑦 ∈ {𝐴} → (𝐵 × {𝐴}) ∈ V))
11 velsn 4593 . . . . 5 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
1211a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴))
13 elmapg 8772 . . . . . 6 (({𝐴} ∈ V ∧ 𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴}))
146, 13sylan 580 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴}))
15 fconst2g 7146 . . . . . 6 (𝐴𝑉 → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴})))
1615adantr 480 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴})))
1714, 16bitr2d 280 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 = (𝐵 × {𝐴}) ↔ 𝑥 ∈ ({𝐴} ↑m 𝐵)))
1812, 17anbi12d 632 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴})) ↔ (𝑦 = 𝐴𝑥 ∈ ({𝐴} ↑m 𝐵))))
19 ancom 460 . . 3 ((𝑦 = 𝐴𝑥 ∈ ({𝐴} ↑m 𝐵)) ↔ (𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴))
2018, 19bitr2di 288 . 2 ((𝐴𝑉𝐵𝑊) → ((𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴) ↔ (𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴}))))
211, 3, 5, 10, 20en2d 8920 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3438  {csn 4577   class class class wbr 5095   × cxp 5619  wf 6485  (class class class)co 7355  m cmap 8759  cen 8875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-en 8879
This theorem is referenced by:  snmapen1  8971
  Copyright terms: Public domain W3C validator