![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snmapen | Structured version Visualization version GIF version |
Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003.) (Revised by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
snmapen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexd 7461 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ∈ V) | |
2 | snex 5437 | . . 3 ⊢ {𝐴} ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴} ∈ V) |
4 | simpl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
5 | 4 | a1d 25 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) → 𝐴 ∈ 𝑉)) |
6 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
7 | 6 | anim1ci 614 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ 𝑊 ∧ {𝐴} ∈ V)) |
8 | xpexg 7758 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ {𝐴} ∈ V) → (𝐵 × {𝐴}) ∈ V) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝐴}) ∈ V) |
10 | 9 | a1d 25 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑦 ∈ {𝐴} → (𝐵 × {𝐴}) ∈ V)) |
11 | velsn 4648 | . . . . 5 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)) |
13 | elmapg 8864 | . . . . . 6 ⊢ (({𝐴} ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴})) | |
14 | 6, 13 | sylan 578 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴})) |
15 | fconst2g 7221 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴}))) | |
16 | 15 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴}))) |
17 | 14, 16 | bitr2d 279 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 = (𝐵 × {𝐴}) ↔ 𝑥 ∈ ({𝐴} ↑m 𝐵))) |
18 | 12, 17 | anbi12d 630 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴})) ↔ (𝑦 = 𝐴 ∧ 𝑥 ∈ ({𝐴} ↑m 𝐵)))) |
19 | ancom 459 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ({𝐴} ↑m 𝐵)) ↔ (𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴)) | |
20 | 18, 19 | bitr2di 287 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴) ↔ (𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴})))) |
21 | 1, 3, 5, 10, 20 | en2d 9015 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 {csn 4632 class class class wbr 5152 × cxp 5680 ⟶wf 6549 (class class class)co 7426 ↑m cmap 8851 ≈ cen 8967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-map 8853 df-en 8971 |
This theorem is referenced by: snmapen1 9070 |
Copyright terms: Public domain | W3C validator |