| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snmapen | Structured version Visualization version GIF version | ||
| Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003.) (Revised by AV, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| snmapen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd 7429 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ∈ V) | |
| 2 | snex 5399 | . . 3 ⊢ {𝐴} ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴} ∈ V) |
| 4 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 5 | 4 | a1d 25 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) → 𝐴 ∈ 𝑉)) |
| 6 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| 7 | 6 | anim1ci 616 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ 𝑊 ∧ {𝐴} ∈ V)) |
| 8 | xpexg 7733 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ {𝐴} ∈ V) → (𝐵 × {𝐴}) ∈ V) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝐴}) ∈ V) |
| 10 | 9 | a1d 25 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑦 ∈ {𝐴} → (𝐵 × {𝐴}) ∈ V)) |
| 11 | velsn 4613 | . . . . 5 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)) |
| 13 | elmapg 8816 | . . . . . 6 ⊢ (({𝐴} ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴})) | |
| 14 | 6, 13 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴})) |
| 15 | fconst2g 7184 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴}))) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴}))) |
| 17 | 14, 16 | bitr2d 280 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 = (𝐵 × {𝐴}) ↔ 𝑥 ∈ ({𝐴} ↑m 𝐵))) |
| 18 | 12, 17 | anbi12d 632 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴})) ↔ (𝑦 = 𝐴 ∧ 𝑥 ∈ ({𝐴} ↑m 𝐵)))) |
| 19 | ancom 460 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ({𝐴} ↑m 𝐵)) ↔ (𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴)) | |
| 20 | 18, 19 | bitr2di 288 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴) ↔ (𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴})))) |
| 21 | 1, 3, 5, 10, 20 | en2d 8965 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 {csn 4597 class class class wbr 5115 × cxp 5644 ⟶wf 6515 (class class class)co 7394 ↑m cmap 8803 ≈ cen 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-map 8805 df-en 8923 |
| This theorem is referenced by: snmapen1 9016 |
| Copyright terms: Public domain | W3C validator |