MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snmapen Structured version   Visualization version   GIF version

Theorem snmapen 9015
Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003.) (Revised by AV, 17-Jul-2022.)
Assertion
Ref Expression
snmapen ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴})

Proof of Theorem snmapen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7429 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ∈ V)
2 snex 5399 . . 3 {𝐴} ∈ V
32a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} ∈ V)
4 simpl 482 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
54a1d 25 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) → 𝐴𝑉))
62a1i 11 . . . . 5 (𝐴𝑉 → {𝐴} ∈ V)
76anim1ci 616 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵𝑊 ∧ {𝐴} ∈ V))
8 xpexg 7733 . . . 4 ((𝐵𝑊 ∧ {𝐴} ∈ V) → (𝐵 × {𝐴}) ∈ V)
97, 8syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝐴}) ∈ V)
109a1d 25 . 2 ((𝐴𝑉𝐵𝑊) → (𝑦 ∈ {𝐴} → (𝐵 × {𝐴}) ∈ V))
11 velsn 4613 . . . . 5 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
1211a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴))
13 elmapg 8816 . . . . . 6 (({𝐴} ∈ V ∧ 𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴}))
146, 13sylan 580 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴}))
15 fconst2g 7184 . . . . . 6 (𝐴𝑉 → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴})))
1615adantr 480 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴})))
1714, 16bitr2d 280 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 = (𝐵 × {𝐴}) ↔ 𝑥 ∈ ({𝐴} ↑m 𝐵)))
1812, 17anbi12d 632 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴})) ↔ (𝑦 = 𝐴𝑥 ∈ ({𝐴} ↑m 𝐵))))
19 ancom 460 . . 3 ((𝑦 = 𝐴𝑥 ∈ ({𝐴} ↑m 𝐵)) ↔ (𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴))
2018, 19bitr2di 288 . 2 ((𝐴𝑉𝐵𝑊) → ((𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴) ↔ (𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴}))))
211, 3, 5, 10, 20en2d 8965 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  {csn 4597   class class class wbr 5115   × cxp 5644  wf 6515  (class class class)co 7394  m cmap 8803  cen 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-map 8805  df-en 8923
This theorem is referenced by:  snmapen1  9016
  Copyright terms: Public domain W3C validator