![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snmapen | Structured version Visualization version GIF version |
Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003.) (Revised by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
snmapen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexd 7440 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ∈ V) | |
2 | snex 5430 | . . 3 ⊢ {𝐴} ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴} ∈ V) |
4 | simpl 483 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
5 | 4 | a1d 25 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) → 𝐴 ∈ 𝑉)) |
6 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
7 | 6 | anim1ci 616 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ 𝑊 ∧ {𝐴} ∈ V)) |
8 | xpexg 7733 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ {𝐴} ∈ V) → (𝐵 × {𝐴}) ∈ V) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝐴}) ∈ V) |
10 | 9 | a1d 25 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑦 ∈ {𝐴} → (𝐵 × {𝐴}) ∈ V)) |
11 | velsn 4643 | . . . . 5 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)) |
13 | elmapg 8829 | . . . . . 6 ⊢ (({𝐴} ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴})) | |
14 | 6, 13 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴})) |
15 | fconst2g 7200 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴}))) | |
16 | 15 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴}))) |
17 | 14, 16 | bitr2d 279 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 = (𝐵 × {𝐴}) ↔ 𝑥 ∈ ({𝐴} ↑m 𝐵))) |
18 | 12, 17 | anbi12d 631 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴})) ↔ (𝑦 = 𝐴 ∧ 𝑥 ∈ ({𝐴} ↑m 𝐵)))) |
19 | ancom 461 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ({𝐴} ↑m 𝐵)) ↔ (𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴)) | |
20 | 18, 19 | bitr2di 287 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴) ↔ (𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴})))) |
21 | 1, 3, 5, 10, 20 | en2d 8980 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4627 class class class wbr 5147 × cxp 5673 ⟶wf 6536 (class class class)co 7405 ↑m cmap 8816 ≈ cen 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-en 8936 |
This theorem is referenced by: snmapen1 9035 |
Copyright terms: Public domain | W3C validator |