MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snmapen Structured version   Visualization version   GIF version

Theorem snmapen 8828
Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003.) (Revised by AV, 17-Jul-2022.)
Assertion
Ref Expression
snmapen ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴})

Proof of Theorem snmapen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7310 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ∈ V)
2 snex 5354 . . 3 {𝐴} ∈ V
32a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} ∈ V)
4 simpl 483 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
54a1d 25 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) → 𝐴𝑉))
62a1i 11 . . . . 5 (𝐴𝑉 → {𝐴} ∈ V)
76anim1ci 616 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵𝑊 ∧ {𝐴} ∈ V))
8 xpexg 7600 . . . 4 ((𝐵𝑊 ∧ {𝐴} ∈ V) → (𝐵 × {𝐴}) ∈ V)
97, 8syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝐴}) ∈ V)
109a1d 25 . 2 ((𝐴𝑉𝐵𝑊) → (𝑦 ∈ {𝐴} → (𝐵 × {𝐴}) ∈ V))
11 velsn 4577 . . . . 5 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
1211a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴))
13 elmapg 8628 . . . . . 6 (({𝐴} ∈ V ∧ 𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴}))
146, 13sylan 580 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴}))
15 fconst2g 7078 . . . . . 6 (𝐴𝑉 → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴})))
1615adantr 481 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴})))
1714, 16bitr2d 279 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 = (𝐵 × {𝐴}) ↔ 𝑥 ∈ ({𝐴} ↑m 𝐵)))
1812, 17anbi12d 631 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴})) ↔ (𝑦 = 𝐴𝑥 ∈ ({𝐴} ↑m 𝐵))))
19 ancom 461 . . 3 ((𝑦 = 𝐴𝑥 ∈ ({𝐴} ↑m 𝐵)) ↔ (𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴))
2018, 19bitr2di 288 . 2 ((𝐴𝑉𝐵𝑊) → ((𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴) ↔ (𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴}))))
211, 3, 5, 10, 20en2d 8776 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   class class class wbr 5074   × cxp 5587  wf 6429  (class class class)co 7275  m cmap 8615  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-en 8734
This theorem is referenced by:  snmapen1  8829
  Copyright terms: Public domain W3C validator