MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snmapen Structured version   Visualization version   GIF version

Theorem snmapen 9086
Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003.) (Revised by AV, 17-Jul-2022.)
Assertion
Ref Expression
snmapen ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴})

Proof of Theorem snmapen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7473 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ∈ V)
2 snex 5445 . . 3 {𝐴} ∈ V
32a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} ∈ V)
4 simpl 482 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
54a1d 25 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) → 𝐴𝑉))
62a1i 11 . . . . 5 (𝐴𝑉 → {𝐴} ∈ V)
76anim1ci 616 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵𝑊 ∧ {𝐴} ∈ V))
8 xpexg 7776 . . . 4 ((𝐵𝑊 ∧ {𝐴} ∈ V) → (𝐵 × {𝐴}) ∈ V)
97, 8syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝐴}) ∈ V)
109a1d 25 . 2 ((𝐴𝑉𝐵𝑊) → (𝑦 ∈ {𝐴} → (𝐵 × {𝐴}) ∈ V))
11 velsn 4650 . . . . 5 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
1211a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴))
13 elmapg 8887 . . . . . 6 (({𝐴} ∈ V ∧ 𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴}))
146, 13sylan 580 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ ({𝐴} ↑m 𝐵) ↔ 𝑥:𝐵⟶{𝐴}))
15 fconst2g 7230 . . . . . 6 (𝐴𝑉 → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴})))
1615adantr 480 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥:𝐵⟶{𝐴} ↔ 𝑥 = (𝐵 × {𝐴})))
1714, 16bitr2d 280 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 = (𝐵 × {𝐴}) ↔ 𝑥 ∈ ({𝐴} ↑m 𝐵)))
1812, 17anbi12d 632 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴})) ↔ (𝑦 = 𝐴𝑥 ∈ ({𝐴} ↑m 𝐵))))
19 ancom 460 . . 3 ((𝑦 = 𝐴𝑥 ∈ ({𝐴} ↑m 𝐵)) ↔ (𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴))
2018, 19bitr2di 288 . 2 ((𝐴𝑉𝐵𝑊) → ((𝑥 ∈ ({𝐴} ↑m 𝐵) ∧ 𝑦 = 𝐴) ↔ (𝑦 ∈ {𝐴} ∧ 𝑥 = (𝐵 × {𝐴}))))
211, 3, 5, 10, 20en2d 9036 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  {csn 4634   class class class wbr 5151   × cxp 5691  wf 6565  (class class class)co 7438  m cmap 8874  cen 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-map 8876  df-en 8994
This theorem is referenced by:  snmapen1  9087
  Copyright terms: Public domain W3C validator