MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnun Structured version   Visualization version   GIF version

Theorem eqfnun 7040
Description: Two functions on 𝐴𝐵 are equal if and only if they have equal restrictions to both 𝐴 and 𝐵. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
eqfnun ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵))))

Proof of Theorem eqfnun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reseq1 5973 . . 3 (𝐹 = 𝐺 → (𝐹𝐴) = (𝐺𝐴))
2 reseq1 5973 . . 3 (𝐹 = 𝐺 → (𝐹𝐵) = (𝐺𝐵))
31, 2jca 511 . 2 (𝐹 = 𝐺 → ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)))
4 elun 4144 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
5 fveq1 6890 . . . . . . . . 9 ((𝐹𝐴) = (𝐺𝐴) → ((𝐹𝐴)‘𝑥) = ((𝐺𝐴)‘𝑥))
6 fvres 6910 . . . . . . . . 9 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
75, 6sylan9req 2788 . . . . . . . 8 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → ((𝐺𝐴)‘𝑥) = (𝐹𝑥))
8 fvres 6910 . . . . . . . . 9 (𝑥𝐴 → ((𝐺𝐴)‘𝑥) = (𝐺𝑥))
98adantl 481 . . . . . . . 8 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → ((𝐺𝐴)‘𝑥) = (𝐺𝑥))
107, 9eqtr3d 2769 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
1110adantlr 714 . . . . . 6 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
12 fveq1 6890 . . . . . . . . 9 ((𝐹𝐵) = (𝐺𝐵) → ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥))
13 fvres 6910 . . . . . . . . 9 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
1412, 13sylan9req 2788 . . . . . . . 8 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → ((𝐺𝐵)‘𝑥) = (𝐹𝑥))
15 fvres 6910 . . . . . . . . 9 (𝑥𝐵 → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
1615adantl 481 . . . . . . . 8 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
1714, 16eqtr3d 2769 . . . . . . 7 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
1817adantll 713 . . . . . 6 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
1911, 18jaodan 956 . . . . 5 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ (𝑥𝐴𝑥𝐵)) → (𝐹𝑥) = (𝐺𝑥))
204, 19sylan2b 593 . . . 4 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥 ∈ (𝐴𝐵)) → (𝐹𝑥) = (𝐺𝑥))
2120ralrimiva 3141 . . 3 (((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) → ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = (𝐺𝑥))
22 eqfnfv 7034 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = (𝐺𝑥)))
2321, 22imbitrrid 245 . 2 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) → 𝐹 = 𝐺))
243, 23impbid2 225 1 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  wral 3056  cun 3942  cres 5674   Fn wfn 6537  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by:  selvvvval  41740
  Copyright terms: Public domain W3C validator