MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnun Structured version   Visualization version   GIF version

Theorem eqfnun 7038
Description: Two functions on 𝐴𝐵 are equal if and only if they have equal restrictions to both 𝐴 and 𝐵. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
eqfnun ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵))))

Proof of Theorem eqfnun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reseq1 5975 . . 3 (𝐹 = 𝐺 → (𝐹𝐴) = (𝐺𝐴))
2 reseq1 5975 . . 3 (𝐹 = 𝐺 → (𝐹𝐵) = (𝐺𝐵))
31, 2jca 512 . 2 (𝐹 = 𝐺 → ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)))
4 elun 4148 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
5 fveq1 6890 . . . . . . . . 9 ((𝐹𝐴) = (𝐺𝐴) → ((𝐹𝐴)‘𝑥) = ((𝐺𝐴)‘𝑥))
6 fvres 6910 . . . . . . . . 9 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
75, 6sylan9req 2793 . . . . . . . 8 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → ((𝐺𝐴)‘𝑥) = (𝐹𝑥))
8 fvres 6910 . . . . . . . . 9 (𝑥𝐴 → ((𝐺𝐴)‘𝑥) = (𝐺𝑥))
98adantl 482 . . . . . . . 8 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → ((𝐺𝐴)‘𝑥) = (𝐺𝑥))
107, 9eqtr3d 2774 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
1110adantlr 713 . . . . . 6 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
12 fveq1 6890 . . . . . . . . 9 ((𝐹𝐵) = (𝐺𝐵) → ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥))
13 fvres 6910 . . . . . . . . 9 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
1412, 13sylan9req 2793 . . . . . . . 8 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → ((𝐺𝐵)‘𝑥) = (𝐹𝑥))
15 fvres 6910 . . . . . . . . 9 (𝑥𝐵 → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
1615adantl 482 . . . . . . . 8 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
1714, 16eqtr3d 2774 . . . . . . 7 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
1817adantll 712 . . . . . 6 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
1911, 18jaodan 956 . . . . 5 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ (𝑥𝐴𝑥𝐵)) → (𝐹𝑥) = (𝐺𝑥))
204, 19sylan2b 594 . . . 4 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥 ∈ (𝐴𝐵)) → (𝐹𝑥) = (𝐺𝑥))
2120ralrimiva 3146 . . 3 (((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) → ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = (𝐺𝑥))
22 eqfnfv 7032 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = (𝐺𝑥)))
2321, 22imbitrrid 245 . 2 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) → 𝐹 = 𝐺))
243, 23impbid2 225 1 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3061  cun 3946  cres 5678   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  selvvvval  41159
  Copyright terms: Public domain W3C validator