MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvreseq0 Structured version   Visualization version   GIF version

Theorem fvreseq0 7071
Description: Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019.)
Assertion
Ref Expression
fvreseq0 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐵𝐴𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem fvreseq0
StepHypRef Expression
1 fnssres 6703 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
2 fnssres 6703 . . 3 ((𝐺 Fn 𝐶𝐵𝐶) → (𝐺𝐵) Fn 𝐵)
3 eqfnfv 7064 . . . 4 (((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥)))
4 fvres 6939 . . . . . 6 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
5 fvres 6939 . . . . . 6 (𝑥𝐵 → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
64, 5eqeq12d 2756 . . . . 5 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
76ralbiia 3097 . . . 4 (∀𝑥𝐵 ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
83, 7bitrdi 287 . . 3 (((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
91, 2, 8syl2an 595 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ (𝐺 Fn 𝐶𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
109an4s 659 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐵𝐴𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  cres 5702   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  fvreseq1  7072  fvreseq  7073  ply1degltdimlem  33635  limsupequzlem  45643
  Copyright terms: Public domain W3C validator