![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvreseq0 | Structured version Visualization version GIF version |
Description: Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
fvreseq0 | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐶)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssres 6297 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
2 | fnssres 6297 | . . 3 ⊢ ((𝐺 Fn 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵) Fn 𝐵) | |
3 | eqfnfv 6621 | . . . 4 ⊢ (((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐺 ↾ 𝐵) Fn 𝐵) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥))) | |
4 | fvres 6512 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
5 | fvres 6512 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → ((𝐺 ↾ 𝐵)‘𝑥) = (𝐺‘𝑥)) | |
6 | 4, 5 | eqeq12d 2787 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 6 | ralbiia 3108 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) |
8 | 3, 7 | syl6bb 279 | . . 3 ⊢ (((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐺 ↾ 𝐵) Fn 𝐵) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
9 | 1, 2, 8 | syl2an 586 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ (𝐺 Fn 𝐶 ∧ 𝐵 ⊆ 𝐶)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
10 | 9 | an4s 647 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐶)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∀wral 3082 ⊆ wss 3825 ↾ cres 5402 Fn wfn 6177 ‘cfv 6182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-fv 6190 |
This theorem is referenced by: fvreseq1 6628 fvreseq 6629 limsupequzlem 41380 |
Copyright terms: Public domain | W3C validator |