| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvreseq0 | Structured version Visualization version GIF version | ||
| Description: Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019.) |
| Ref | Expression |
|---|---|
| fvreseq0 | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐶)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssres 6604 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
| 2 | fnssres 6604 | . . 3 ⊢ ((𝐺 Fn 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵) Fn 𝐵) | |
| 3 | eqfnfv 6964 | . . . 4 ⊢ (((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐺 ↾ 𝐵) Fn 𝐵) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥))) | |
| 4 | fvres 6841 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
| 5 | fvres 6841 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → ((𝐺 ↾ 𝐵)‘𝑥) = (𝐺‘𝑥)) | |
| 6 | 4, 5 | eqeq12d 2747 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 7 | 6 | ralbiia 3076 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 8 | 3, 7 | bitrdi 287 | . . 3 ⊢ (((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐺 ↾ 𝐵) Fn 𝐵) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 9 | 1, 2, 8 | syl2an 596 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ (𝐺 Fn 𝐶 ∧ 𝐵 ⊆ 𝐶)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 10 | 9 | an4s 660 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐶)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 ↾ cres 5618 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fvreseq1 6972 fvreseq 6973 ply1degltdimlem 33630 limsupequzlem 45759 |
| Copyright terms: Public domain | W3C validator |