MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvreseq0 Structured version   Visualization version   GIF version

Theorem fvreseq0 6836
Description: Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019.)
Assertion
Ref Expression
fvreseq0 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐵𝐴𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem fvreseq0
StepHypRef Expression
1 fnssres 6478 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
2 fnssres 6478 . . 3 ((𝐺 Fn 𝐶𝐵𝐶) → (𝐺𝐵) Fn 𝐵)
3 eqfnfv 6830 . . . 4 (((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥)))
4 fvres 6714 . . . . . 6 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
5 fvres 6714 . . . . . 6 (𝑥𝐵 → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
64, 5eqeq12d 2752 . . . . 5 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
76ralbiia 3077 . . . 4 (∀𝑥𝐵 ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
83, 7bitrdi 290 . . 3 (((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
91, 2, 8syl2an 599 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ (𝐺 Fn 𝐶𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
109an4s 660 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐵𝐴𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  wss 3853  cres 5538   Fn wfn 6353  cfv 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-fv 6366
This theorem is referenced by:  fvreseq1  6837  fvreseq  6838  limsupequzlem  42881
  Copyright terms: Public domain W3C validator