MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvreseq0 Structured version   Visualization version   GIF version

Theorem fvreseq0 6627
Description: Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019.)
Assertion
Ref Expression
fvreseq0 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐵𝐴𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem fvreseq0
StepHypRef Expression
1 fnssres 6297 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
2 fnssres 6297 . . 3 ((𝐺 Fn 𝐶𝐵𝐶) → (𝐺𝐵) Fn 𝐵)
3 eqfnfv 6621 . . . 4 (((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥)))
4 fvres 6512 . . . . . 6 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
5 fvres 6512 . . . . . 6 (𝑥𝐵 → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
64, 5eqeq12d 2787 . . . . 5 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
76ralbiia 3108 . . . 4 (∀𝑥𝐵 ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
83, 7syl6bb 279 . . 3 (((𝐹𝐵) Fn 𝐵 ∧ (𝐺𝐵) Fn 𝐵) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
91, 2, 8syl2an 586 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ (𝐺 Fn 𝐶𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
109an4s 647 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐵𝐴𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  wral 3082  wss 3825  cres 5402   Fn wfn 6177  cfv 6182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-fv 6190
This theorem is referenced by:  fvreseq1  6628  fvreseq  6629  limsupequzlem  41380
  Copyright terms: Public domain W3C validator