![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusmulf | Structured version Visualization version GIF version |
Description: The multiplication in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
qusmulf.p | ⊢ · = (.r‘𝑅) |
qusmulf.a | ⊢ ∙ = (.r‘𝑈) |
Ref | Expression |
---|---|
qusmulf | ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusaddf.u | . 2 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | qusaddf.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | qusaddf.r | . 2 ⊢ (𝜑 → ∼ Er 𝑉) | |
4 | qusaddf.z | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | qusaddf.e | . 2 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
6 | qusaddf.c | . 2 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
7 | eqid 2725 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
8 | fvex 6909 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
9 | 2, 8 | eqeltrdi 2833 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
10 | erex 8749 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
11 | 3, 9, 10 | sylc 65 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
12 | 1, 2, 7, 11, 4 | qusval 17527 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
13 | 1, 2, 7, 11, 4 | quslem 17528 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
14 | qusmulf.p | . . 3 ⊢ · = (.r‘𝑅) | |
15 | qusmulf.a | . . 3 ⊢ ∙ = (.r‘𝑈) | |
16 | 12, 2, 13, 4, 14, 15 | imasmulr 17503 | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘𝑝), ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘𝑞)〉, ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘(𝑝 · 𝑞))〉}) |
17 | 1, 2, 3, 4, 5, 6, 7, 16 | qusaddflem 17537 | 1 ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 class class class wbr 5149 ↦ cmpt 5232 × cxp 5676 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Er wer 8722 [cec 8723 / cqs 8724 Basecbs 17183 .rcmulr 17237 /s cqus 17490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-ec 8727 df-qs 8731 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-imas 17493 df-qus 17494 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |