MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusmulval Structured version   Visualization version   GIF version

Theorem qusmulval 17456
Description: The multiplication in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u (𝜑𝑈 = (𝑅 /s ))
qusaddf.v (𝜑𝑉 = (Base‘𝑅))
qusaddf.r (𝜑 Er 𝑉)
qusaddf.z (𝜑𝑅𝑍)
qusaddf.e (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusaddf.c ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
qusmulf.p · = (.r𝑅)
qusmulf.a = (.r𝑈)
Assertion
Ref Expression
qusmulval ((𝜑𝑋𝑉𝑌𝑉) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
Distinct variable groups:   𝑎,𝑏,𝑝,𝑞,   𝜑,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   𝑋,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   𝑌,𝑝,𝑞
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝑈(𝑞,𝑝,𝑎,𝑏)   𝑋(𝑎,𝑏)   𝑌(𝑎,𝑏)   𝑍(𝑞,𝑝,𝑎,𝑏)

Proof of Theorem qusmulval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusaddf.u . 2 (𝜑𝑈 = (𝑅 /s ))
2 qusaddf.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 qusaddf.r . 2 (𝜑 Er 𝑉)
4 qusaddf.z . 2 (𝜑𝑅𝑍)
5 qusaddf.e . 2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
6 qusaddf.c . 2 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
7 eqid 2731 . 2 (𝑥𝑉 ↦ [𝑥] ) = (𝑥𝑉 ↦ [𝑥] )
8 fvex 6835 . . . . . 6 (Base‘𝑅) ∈ V
92, 8eqeltrdi 2839 . . . . 5 (𝜑𝑉 ∈ V)
10 erex 8646 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
113, 9, 10sylc 65 . . . 4 (𝜑 ∈ V)
121, 2, 7, 11, 4qusval 17443 . . 3 (𝜑𝑈 = ((𝑥𝑉 ↦ [𝑥] ) “s 𝑅))
131, 2, 7, 11, 4quslem 17444 . . 3 (𝜑 → (𝑥𝑉 ↦ [𝑥] ):𝑉onto→(𝑉 / ))
14 qusmulf.p . . 3 · = (.r𝑅)
15 qusmulf.a . . 3 = (.r𝑈)
1612, 2, 13, 4, 14, 15imasmulr 17419 . 2 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨((𝑥𝑉 ↦ [𝑥] )‘𝑝), ((𝑥𝑉 ↦ [𝑥] )‘𝑞)⟩, ((𝑥𝑉 ↦ [𝑥] )‘(𝑝 · 𝑞))⟩})
171, 2, 3, 4, 5, 6, 7, 16qusaddvallem 17452 1 ((𝜑𝑋𝑉𝑌𝑉) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346   Er wer 8619  [cec 8620   / cqs 8621  Basecbs 17117  .rcmulr 17159   /s cqus 17406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-imas 17409  df-qus 17410
This theorem is referenced by:  qusrhm  21211  qusmul2idl  21214  qusmulrng  21217  rlocmulval  33231  qsidomlem1  33412  qsidomlem2  33413
  Copyright terms: Public domain W3C validator