Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qusaddf | Structured version Visualization version GIF version |
Description: The base set of an image structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
qusaddf.p | ⊢ · = (+g‘𝑅) |
qusaddf.a | ⊢ ∙ = (+g‘𝑈) |
Ref | Expression |
---|---|
qusaddf | ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusaddf.u | . 2 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | qusaddf.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | qusaddf.r | . 2 ⊢ (𝜑 → ∼ Er 𝑉) | |
4 | qusaddf.z | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | qusaddf.e | . 2 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
6 | qusaddf.c | . 2 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
7 | eqid 2738 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
8 | fvex 6787 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
9 | 2, 8 | eqeltrdi 2847 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
10 | erex 8522 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
11 | 3, 9, 10 | sylc 65 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
12 | 1, 2, 7, 11, 4 | qusval 17253 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
13 | 1, 2, 7, 11, 4 | quslem 17254 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
14 | qusaddf.p | . . 3 ⊢ · = (+g‘𝑅) | |
15 | qusaddf.a | . . 3 ⊢ ∙ = (+g‘𝑈) | |
16 | 12, 2, 13, 4, 14, 15 | imasplusg 17228 | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘𝑝), ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘𝑞)〉, ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )‘(𝑝 · 𝑞))〉}) |
17 | 1, 2, 3, 4, 5, 6, 7, 16 | qusaddflem 17263 | 1 ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 ↦ cmpt 5157 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Er wer 8495 [cec 8496 / cqs 8497 Basecbs 16912 +gcplusg 16962 /s cqus 17216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-ec 8500 df-qs 8504 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-imas 17219 df-qus 17220 |
This theorem is referenced by: pi1addf 24210 |
Copyright terms: Public domain | W3C validator |