MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusaddval Structured version   Visualization version   GIF version

Theorem qusaddval 17465
Description: The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u (𝜑𝑈 = (𝑅 /s ))
qusaddf.v (𝜑𝑉 = (Base‘𝑅))
qusaddf.r (𝜑 Er 𝑉)
qusaddf.z (𝜑𝑅𝑍)
qusaddf.e (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusaddf.c ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
qusaddf.p · = (+g𝑅)
qusaddf.a = (+g𝑈)
Assertion
Ref Expression
qusaddval ((𝜑𝑋𝑉𝑌𝑉) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
Distinct variable groups:   𝑎,𝑏,𝑝,𝑞,   𝜑,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   𝑋,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   𝑌,𝑝,𝑞
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝑈(𝑞,𝑝,𝑎,𝑏)   𝑋(𝑎,𝑏)   𝑌(𝑎,𝑏)   𝑍(𝑞,𝑝,𝑎,𝑏)

Proof of Theorem qusaddval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusaddf.u . 2 (𝜑𝑈 = (𝑅 /s ))
2 qusaddf.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 qusaddf.r . 2 (𝜑 Er 𝑉)
4 qusaddf.z . 2 (𝜑𝑅𝑍)
5 qusaddf.e . 2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
6 qusaddf.c . 2 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
7 eqid 2733 . 2 (𝑥𝑉 ↦ [𝑥] ) = (𝑥𝑉 ↦ [𝑥] )
8 fvex 6844 . . . . . 6 (Base‘𝑅) ∈ V
92, 8eqeltrdi 2841 . . . . 5 (𝜑𝑉 ∈ V)
10 erex 8655 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
113, 9, 10sylc 65 . . . 4 (𝜑 ∈ V)
121, 2, 7, 11, 4qusval 17454 . . 3 (𝜑𝑈 = ((𝑥𝑉 ↦ [𝑥] ) “s 𝑅))
131, 2, 7, 11, 4quslem 17455 . . 3 (𝜑 → (𝑥𝑉 ↦ [𝑥] ):𝑉onto→(𝑉 / ))
14 qusaddf.p . . 3 · = (+g𝑅)
15 qusaddf.a . . 3 = (+g𝑈)
1612, 2, 13, 4, 14, 15imasplusg 17429 . 2 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨((𝑥𝑉 ↦ [𝑥] )‘𝑝), ((𝑥𝑉 ↦ [𝑥] )‘𝑞)⟩, ((𝑥𝑉 ↦ [𝑥] )‘(𝑝 · 𝑞))⟩})
171, 2, 3, 4, 5, 6, 7, 16qusaddvallem 17463 1 ((𝜑𝑋𝑉𝑌𝑉) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355   Er wer 8628  [cec 8629   / cqs 8630  Basecbs 17127  +gcplusg 17168   /s cqus 17417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-ec 8633  df-qs 8637  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-imas 17420  df-qus 17421
This theorem is referenced by:  qusadd  19108  qus0subgadd  19119  frgpadd  19683  pi1addval  24995  rlocaddval  33278
  Copyright terms: Public domain W3C validator