| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1inv | Structured version Visualization version GIF version | ||
| Description: An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| Ref | Expression |
|---|---|
| pi1grp.2 | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| pi1inv.n | ⊢ 𝑁 = (invg‘𝐺) |
| pi1inv.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| pi1inv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1inv.f | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| pi1inv.0 | ⊢ (𝜑 → (𝐹‘0) = 𝑌) |
| pi1inv.1 | ⊢ (𝜑 → (𝐹‘1) = 𝑌) |
| pi1inv.i | ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
| Ref | Expression |
|---|---|
| pi1inv | ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pi1grp.2 | . . . 4 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | pi1inv.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 4 | pi1inv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 5 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | pi1inv.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 7 | pi1inv.i | . . . . . . . 8 ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) | |
| 8 | 7 | pcorevcl 24958 | . . . . . . 7 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
| 9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
| 10 | 9 | simp1d 1142 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
| 11 | 9 | simp2d 1143 | . . . . . 6 ⊢ (𝜑 → (𝐼‘0) = (𝐹‘1)) |
| 12 | pi1inv.1 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) = 𝑌) | |
| 13 | 11, 12 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → (𝐼‘0) = 𝑌) |
| 14 | 9 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) |
| 15 | pi1inv.0 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) = 𝑌) | |
| 16 | 14, 15 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → (𝐼‘1) = 𝑌) |
| 17 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
| 18 | 1, 3, 4, 17 | pi1eluni 24975 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ ∪ (Base‘𝐺) ↔ (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = 𝑌 ∧ (𝐼‘1) = 𝑌))) |
| 19 | 10, 13, 16, 18 | mpbir3and 1343 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ∪ (Base‘𝐺)) |
| 20 | 1, 3, 4, 17 | pi1eluni 24975 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ ∪ (Base‘𝐺) ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
| 21 | 6, 15, 12, 20 | mpbir3and 1343 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ∪ (Base‘𝐺)) |
| 22 | 1, 2, 3, 4, 5, 19, 21 | pi1addval 24981 | . . 3 ⊢ (𝜑 → ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)𝐹)]( ≃ph‘𝐽)) |
| 23 | phtpcer 24927 | . . . . 5 ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → ( ≃ph‘𝐽) Er (II Cn 𝐽)) |
| 25 | eqid 2729 | . . . . . . 7 ⊢ ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {(𝐹‘1)}) | |
| 26 | 7, 25 | pcorev 24960 | . . . . . 6 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘1)})) |
| 27 | 6, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘1)})) |
| 28 | 12 | sneqd 4597 | . . . . . 6 ⊢ (𝜑 → {(𝐹‘1)} = {𝑌}) |
| 29 | 28 | xpeq2d 5661 | . . . . 5 ⊢ (𝜑 → ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {𝑌})) |
| 30 | 27, 29 | breqtrd 5128 | . . . 4 ⊢ (𝜑 → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {𝑌})) |
| 31 | 24, 30 | erthi 8704 | . . 3 ⊢ (𝜑 → [(𝐼(*𝑝‘𝐽)𝐹)]( ≃ph‘𝐽) = [((0[,]1) × {𝑌})]( ≃ph‘𝐽)) |
| 32 | eqid 2729 | . . . . 5 ⊢ ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌}) | |
| 33 | 1, 2, 3, 4, 32 | pi1grplem 24982 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ Grp ∧ [((0[,]1) × {𝑌})]( ≃ph‘𝐽) = (0g‘𝐺))) |
| 34 | 33 | simprd 495 | . . 3 ⊢ (𝜑 → [((0[,]1) × {𝑌})]( ≃ph‘𝐽) = (0g‘𝐺)) |
| 35 | 22, 31, 34 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺)) |
| 36 | 33 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 37 | 1, 2, 3, 4, 6, 15, 12 | elpi1i 24979 | . . 3 ⊢ (𝜑 → [𝐹]( ≃ph‘𝐽) ∈ (Base‘𝐺)) |
| 38 | 1, 2, 3, 4, 10, 13, 16 | elpi1i 24979 | . . 3 ⊢ (𝜑 → [𝐼]( ≃ph‘𝐽) ∈ (Base‘𝐺)) |
| 39 | eqid 2729 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 40 | pi1inv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 41 | 2, 5, 39, 40 | grpinvid2 18906 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ [𝐹]( ≃ph‘𝐽) ∈ (Base‘𝐺) ∧ [𝐼]( ≃ph‘𝐽) ∈ (Base‘𝐺)) → ((𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽) ↔ ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺))) |
| 42 | 36, 37, 38, 41 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽) ↔ ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺))) |
| 43 | 35, 42 | mpbird 257 | 1 ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4585 ∪ cuni 4867 class class class wbr 5102 ↦ cmpt 5183 × cxp 5629 ‘cfv 6499 (class class class)co 7369 Er wer 8645 [cec 8646 0cc0 11044 1c1 11045 − cmin 11381 [,]cicc 13285 Basecbs 17155 +gcplusg 17196 0gc0g 17378 Grpcgrp 18847 invgcminusg 18848 TopOnctopon 22830 Cn ccn 23144 IIcii 24801 ≃phcphtpc 24901 *𝑝cpco 24933 π1 cpi1 24936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-qus 17448 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-grp 18850 df-minusg 18851 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-cn 23147 df-cnp 23148 df-tx 23482 df-hmeo 23675 df-xms 24241 df-ms 24242 df-tms 24243 df-ii 24803 df-htpy 24902 df-phtpy 24903 df-phtpc 24924 df-pco 24938 df-om1 24939 df-pi1 24941 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |