MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1inv Structured version   Visualization version   GIF version

Theorem pi1inv 24211
Description: An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.)
Hypotheses
Ref Expression
pi1grp.2 𝐺 = (𝐽 π1 𝑌)
pi1inv.n 𝑁 = (invg𝐺)
pi1inv.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1inv.y (𝜑𝑌𝑋)
pi1inv.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1inv.0 (𝜑 → (𝐹‘0) = 𝑌)
pi1inv.1 (𝜑 → (𝐹‘1) = 𝑌)
pi1inv.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
Assertion
Ref Expression
pi1inv (𝜑 → (𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝜑,𝑥   𝑥,𝑌
Allowed substitution hints:   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem pi1inv
StepHypRef Expression
1 pi1grp.2 . . . 4 𝐺 = (𝐽 π1 𝑌)
2 eqid 2740 . . . 4 (Base‘𝐺) = (Base‘𝐺)
3 pi1inv.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 pi1inv.y . . . 4 (𝜑𝑌𝑋)
5 eqid 2740 . . . 4 (+g𝐺) = (+g𝐺)
6 pi1inv.f . . . . . . 7 (𝜑𝐹 ∈ (II Cn 𝐽))
7 pi1inv.i . . . . . . . 8 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
87pcorevcl 24184 . . . . . . 7 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
96, 8syl 17 . . . . . 6 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
109simp1d 1141 . . . . 5 (𝜑𝐼 ∈ (II Cn 𝐽))
119simp2d 1142 . . . . . 6 (𝜑 → (𝐼‘0) = (𝐹‘1))
12 pi1inv.1 . . . . . 6 (𝜑 → (𝐹‘1) = 𝑌)
1311, 12eqtrd 2780 . . . . 5 (𝜑 → (𝐼‘0) = 𝑌)
149simp3d 1143 . . . . . 6 (𝜑 → (𝐼‘1) = (𝐹‘0))
15 pi1inv.0 . . . . . 6 (𝜑 → (𝐹‘0) = 𝑌)
1614, 15eqtrd 2780 . . . . 5 (𝜑 → (𝐼‘1) = 𝑌)
172a1i 11 . . . . . 6 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
181, 3, 4, 17pi1eluni 24201 . . . . 5 (𝜑 → (𝐼 (Base‘𝐺) ↔ (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = 𝑌 ∧ (𝐼‘1) = 𝑌)))
1910, 13, 16, 18mpbir3and 1341 . . . 4 (𝜑𝐼 (Base‘𝐺))
201, 3, 4, 17pi1eluni 24201 . . . . 5 (𝜑 → (𝐹 (Base‘𝐺) ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌)))
216, 15, 12, 20mpbir3and 1341 . . . 4 (𝜑𝐹 (Base‘𝐺))
221, 2, 3, 4, 5, 19, 21pi1addval 24207 . . 3 (𝜑 → ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)𝐹)]( ≃ph𝐽))
23 phtpcer 24154 . . . . 5 ( ≃ph𝐽) Er (II Cn 𝐽)
2423a1i 11 . . . 4 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
25 eqid 2740 . . . . . . 7 ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {(𝐹‘1)})
267, 25pcorev 24186 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → (𝐼(*𝑝𝐽)𝐹)( ≃ph𝐽)((0[,]1) × {(𝐹‘1)}))
276, 26syl 17 . . . . 5 (𝜑 → (𝐼(*𝑝𝐽)𝐹)( ≃ph𝐽)((0[,]1) × {(𝐹‘1)}))
2812sneqd 4579 . . . . . 6 (𝜑 → {(𝐹‘1)} = {𝑌})
2928xpeq2d 5619 . . . . 5 (𝜑 → ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {𝑌}))
3027, 29breqtrd 5105 . . . 4 (𝜑 → (𝐼(*𝑝𝐽)𝐹)( ≃ph𝐽)((0[,]1) × {𝑌}))
3124, 30erthi 8530 . . 3 (𝜑 → [(𝐼(*𝑝𝐽)𝐹)]( ≃ph𝐽) = [((0[,]1) × {𝑌})]( ≃ph𝐽))
32 eqid 2740 . . . . 5 ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌})
331, 2, 3, 4, 32pi1grplem 24208 . . . 4 (𝜑 → (𝐺 ∈ Grp ∧ [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g𝐺)))
3433simprd 496 . . 3 (𝜑 → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g𝐺))
3522, 31, 343eqtrd 2784 . 2 (𝜑 → ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = (0g𝐺))
3633simpld 495 . . 3 (𝜑𝐺 ∈ Grp)
371, 2, 3, 4, 6, 15, 12elpi1i 24205 . . 3 (𝜑 → [𝐹]( ≃ph𝐽) ∈ (Base‘𝐺))
381, 2, 3, 4, 10, 13, 16elpi1i 24205 . . 3 (𝜑 → [𝐼]( ≃ph𝐽) ∈ (Base‘𝐺))
39 eqid 2740 . . . 4 (0g𝐺) = (0g𝐺)
40 pi1inv.n . . . 4 𝑁 = (invg𝐺)
412, 5, 39, 40grpinvid2 18627 . . 3 ((𝐺 ∈ Grp ∧ [𝐹]( ≃ph𝐽) ∈ (Base‘𝐺) ∧ [𝐼]( ≃ph𝐽) ∈ (Base‘𝐺)) → ((𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽) ↔ ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = (0g𝐺)))
4236, 37, 38, 41syl3anc 1370 . 2 (𝜑 → ((𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽) ↔ ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = (0g𝐺)))
4335, 42mpbird 256 1 (𝜑 → (𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1542  wcel 2110  {csn 4567   cuni 4845   class class class wbr 5079  cmpt 5162   × cxp 5587  cfv 6431  (class class class)co 7269   Er wer 8476  [cec 8477  0cc0 10870  1c1 10871  cmin 11203  [,]cicc 13079  Basecbs 16908  +gcplusg 16958  0gc0g 17146  Grpcgrp 18573  invgcminusg 18574  TopOnctopon 22055   Cn ccn 22371  IIcii 24034  phcphtpc 24128  *𝑝cpco 24159   π1 cpi1 24162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948  ax-addf 10949  ax-mulf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-er 8479  df-ec 8481  df-qs 8485  df-map 8598  df-ixp 8667  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-fsupp 9105  df-fi 9146  df-sup 9177  df-inf 9178  df-oi 9245  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12435  df-uz 12580  df-q 12686  df-rp 12728  df-xneg 12845  df-xadd 12846  df-xmul 12847  df-ioo 13080  df-icc 13083  df-fz 13237  df-fzo 13380  df-seq 13718  df-exp 13779  df-hash 14041  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-struct 16844  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-starv 16973  df-sca 16974  df-vsca 16975  df-ip 16976  df-tset 16977  df-ple 16978  df-ds 16980  df-unif 16981  df-hom 16982  df-cco 16983  df-rest 17129  df-topn 17130  df-0g 17148  df-gsum 17149  df-topgen 17150  df-pt 17151  df-prds 17154  df-xrs 17209  df-qtop 17214  df-imas 17215  df-qus 17216  df-xps 17217  df-mre 17291  df-mrc 17292  df-acs 17294  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-submnd 18427  df-grp 18576  df-minusg 18577  df-mulg 18697  df-cntz 18919  df-cmn 19384  df-psmet 20585  df-xmet 20586  df-met 20587  df-bl 20588  df-mopn 20589  df-cnfld 20594  df-top 22039  df-topon 22056  df-topsp 22078  df-bases 22092  df-cld 22166  df-cn 22374  df-cnp 22375  df-tx 22709  df-hmeo 22902  df-xms 23469  df-ms 23470  df-tms 23471  df-ii 24036  df-htpy 24129  df-phtpy 24130  df-phtpc 24151  df-pco 24164  df-om1 24165  df-pi1 24167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator