Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pi1inv | Structured version Visualization version GIF version |
Description: An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
Ref | Expression |
---|---|
pi1grp.2 | ⊢ 𝐺 = (𝐽 π1 𝑌) |
pi1inv.n | ⊢ 𝑁 = (invg‘𝐺) |
pi1inv.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1inv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1inv.f | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pi1inv.0 | ⊢ (𝜑 → (𝐹‘0) = 𝑌) |
pi1inv.1 | ⊢ (𝜑 → (𝐹‘1) = 𝑌) |
pi1inv.i | ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
Ref | Expression |
---|---|
pi1inv | ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1grp.2 | . . . 4 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | pi1inv.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
4 | pi1inv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
5 | eqid 2738 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | pi1inv.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
7 | pi1inv.i | . . . . . . . 8 ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) | |
8 | 7 | pcorevcl 24094 | . . . . . . 7 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
10 | 9 | simp1d 1140 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
11 | 9 | simp2d 1141 | . . . . . 6 ⊢ (𝜑 → (𝐼‘0) = (𝐹‘1)) |
12 | pi1inv.1 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) = 𝑌) | |
13 | 11, 12 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → (𝐼‘0) = 𝑌) |
14 | 9 | simp3d 1142 | . . . . . 6 ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) |
15 | pi1inv.0 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) = 𝑌) | |
16 | 14, 15 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → (𝐼‘1) = 𝑌) |
17 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
18 | 1, 3, 4, 17 | pi1eluni 24111 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ ∪ (Base‘𝐺) ↔ (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = 𝑌 ∧ (𝐼‘1) = 𝑌))) |
19 | 10, 13, 16, 18 | mpbir3and 1340 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ∪ (Base‘𝐺)) |
20 | 1, 3, 4, 17 | pi1eluni 24111 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ ∪ (Base‘𝐺) ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
21 | 6, 15, 12, 20 | mpbir3and 1340 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ∪ (Base‘𝐺)) |
22 | 1, 2, 3, 4, 5, 19, 21 | pi1addval 24117 | . . 3 ⊢ (𝜑 → ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)𝐹)]( ≃ph‘𝐽)) |
23 | phtpcer 24064 | . . . . 5 ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → ( ≃ph‘𝐽) Er (II Cn 𝐽)) |
25 | eqid 2738 | . . . . . . 7 ⊢ ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {(𝐹‘1)}) | |
26 | 7, 25 | pcorev 24096 | . . . . . 6 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘1)})) |
27 | 6, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘1)})) |
28 | 12 | sneqd 4570 | . . . . . 6 ⊢ (𝜑 → {(𝐹‘1)} = {𝑌}) |
29 | 28 | xpeq2d 5610 | . . . . 5 ⊢ (𝜑 → ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {𝑌})) |
30 | 27, 29 | breqtrd 5096 | . . . 4 ⊢ (𝜑 → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {𝑌})) |
31 | 24, 30 | erthi 8507 | . . 3 ⊢ (𝜑 → [(𝐼(*𝑝‘𝐽)𝐹)]( ≃ph‘𝐽) = [((0[,]1) × {𝑌})]( ≃ph‘𝐽)) |
32 | eqid 2738 | . . . . 5 ⊢ ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌}) | |
33 | 1, 2, 3, 4, 32 | pi1grplem 24118 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ Grp ∧ [((0[,]1) × {𝑌})]( ≃ph‘𝐽) = (0g‘𝐺))) |
34 | 33 | simprd 495 | . . 3 ⊢ (𝜑 → [((0[,]1) × {𝑌})]( ≃ph‘𝐽) = (0g‘𝐺)) |
35 | 22, 31, 34 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺)) |
36 | 33 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
37 | 1, 2, 3, 4, 6, 15, 12 | elpi1i 24115 | . . 3 ⊢ (𝜑 → [𝐹]( ≃ph‘𝐽) ∈ (Base‘𝐺)) |
38 | 1, 2, 3, 4, 10, 13, 16 | elpi1i 24115 | . . 3 ⊢ (𝜑 → [𝐼]( ≃ph‘𝐽) ∈ (Base‘𝐺)) |
39 | eqid 2738 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
40 | pi1inv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
41 | 2, 5, 39, 40 | grpinvid2 18546 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ [𝐹]( ≃ph‘𝐽) ∈ (Base‘𝐺) ∧ [𝐼]( ≃ph‘𝐽) ∈ (Base‘𝐺)) → ((𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽) ↔ ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺))) |
42 | 36, 37, 38, 41 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽) ↔ ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺))) |
43 | 35, 42 | mpbird 256 | 1 ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {csn 4558 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 ‘cfv 6418 (class class class)co 7255 Er wer 8453 [cec 8454 0cc0 10802 1c1 10803 − cmin 11135 [,]cicc 13011 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Grpcgrp 18492 invgcminusg 18493 TopOnctopon 21967 Cn ccn 22283 IIcii 23944 ≃phcphtpc 24038 *𝑝cpco 24069 π1 cpi1 24072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-qus 17137 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 df-ii 23946 df-htpy 24039 df-phtpy 24040 df-phtpc 24061 df-pco 24074 df-om1 24075 df-pi1 24077 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |