MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1inv Structured version   Visualization version   GIF version

Theorem pi1inv 24959
Description: An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.)
Hypotheses
Ref Expression
pi1grp.2 𝐺 = (𝐽 π1 𝑌)
pi1inv.n 𝑁 = (invg𝐺)
pi1inv.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1inv.y (𝜑𝑌𝑋)
pi1inv.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1inv.0 (𝜑 → (𝐹‘0) = 𝑌)
pi1inv.1 (𝜑 → (𝐹‘1) = 𝑌)
pi1inv.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
Assertion
Ref Expression
pi1inv (𝜑 → (𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝜑,𝑥   𝑥,𝑌
Allowed substitution hints:   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem pi1inv
StepHypRef Expression
1 pi1grp.2 . . . 4 𝐺 = (𝐽 π1 𝑌)
2 eqid 2730 . . . 4 (Base‘𝐺) = (Base‘𝐺)
3 pi1inv.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 pi1inv.y . . . 4 (𝜑𝑌𝑋)
5 eqid 2730 . . . 4 (+g𝐺) = (+g𝐺)
6 pi1inv.f . . . . . . 7 (𝜑𝐹 ∈ (II Cn 𝐽))
7 pi1inv.i . . . . . . . 8 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
87pcorevcl 24932 . . . . . . 7 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
96, 8syl 17 . . . . . 6 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
109simp1d 1142 . . . . 5 (𝜑𝐼 ∈ (II Cn 𝐽))
119simp2d 1143 . . . . . 6 (𝜑 → (𝐼‘0) = (𝐹‘1))
12 pi1inv.1 . . . . . 6 (𝜑 → (𝐹‘1) = 𝑌)
1311, 12eqtrd 2765 . . . . 5 (𝜑 → (𝐼‘0) = 𝑌)
149simp3d 1144 . . . . . 6 (𝜑 → (𝐼‘1) = (𝐹‘0))
15 pi1inv.0 . . . . . 6 (𝜑 → (𝐹‘0) = 𝑌)
1614, 15eqtrd 2765 . . . . 5 (𝜑 → (𝐼‘1) = 𝑌)
172a1i 11 . . . . . 6 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
181, 3, 4, 17pi1eluni 24949 . . . . 5 (𝜑 → (𝐼 (Base‘𝐺) ↔ (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = 𝑌 ∧ (𝐼‘1) = 𝑌)))
1910, 13, 16, 18mpbir3and 1343 . . . 4 (𝜑𝐼 (Base‘𝐺))
201, 3, 4, 17pi1eluni 24949 . . . . 5 (𝜑 → (𝐹 (Base‘𝐺) ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌)))
216, 15, 12, 20mpbir3and 1343 . . . 4 (𝜑𝐹 (Base‘𝐺))
221, 2, 3, 4, 5, 19, 21pi1addval 24955 . . 3 (𝜑 → ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)𝐹)]( ≃ph𝐽))
23 phtpcer 24901 . . . . 5 ( ≃ph𝐽) Er (II Cn 𝐽)
2423a1i 11 . . . 4 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
25 eqid 2730 . . . . . . 7 ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {(𝐹‘1)})
267, 25pcorev 24934 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → (𝐼(*𝑝𝐽)𝐹)( ≃ph𝐽)((0[,]1) × {(𝐹‘1)}))
276, 26syl 17 . . . . 5 (𝜑 → (𝐼(*𝑝𝐽)𝐹)( ≃ph𝐽)((0[,]1) × {(𝐹‘1)}))
2812sneqd 4604 . . . . . 6 (𝜑 → {(𝐹‘1)} = {𝑌})
2928xpeq2d 5671 . . . . 5 (𝜑 → ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {𝑌}))
3027, 29breqtrd 5136 . . . 4 (𝜑 → (𝐼(*𝑝𝐽)𝐹)( ≃ph𝐽)((0[,]1) × {𝑌}))
3124, 30erthi 8730 . . 3 (𝜑 → [(𝐼(*𝑝𝐽)𝐹)]( ≃ph𝐽) = [((0[,]1) × {𝑌})]( ≃ph𝐽))
32 eqid 2730 . . . . 5 ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌})
331, 2, 3, 4, 32pi1grplem 24956 . . . 4 (𝜑 → (𝐺 ∈ Grp ∧ [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g𝐺)))
3433simprd 495 . . 3 (𝜑 → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g𝐺))
3522, 31, 343eqtrd 2769 . 2 (𝜑 → ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = (0g𝐺))
3633simpld 494 . . 3 (𝜑𝐺 ∈ Grp)
371, 2, 3, 4, 6, 15, 12elpi1i 24953 . . 3 (𝜑 → [𝐹]( ≃ph𝐽) ∈ (Base‘𝐺))
381, 2, 3, 4, 10, 13, 16elpi1i 24953 . . 3 (𝜑 → [𝐼]( ≃ph𝐽) ∈ (Base‘𝐺))
39 eqid 2730 . . . 4 (0g𝐺) = (0g𝐺)
40 pi1inv.n . . . 4 𝑁 = (invg𝐺)
412, 5, 39, 40grpinvid2 18931 . . 3 ((𝐺 ∈ Grp ∧ [𝐹]( ≃ph𝐽) ∈ (Base‘𝐺) ∧ [𝐼]( ≃ph𝐽) ∈ (Base‘𝐺)) → ((𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽) ↔ ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = (0g𝐺)))
4236, 37, 38, 41syl3anc 1373 . 2 (𝜑 → ((𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽) ↔ ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = (0g𝐺)))
4335, 42mpbird 257 1 (𝜑 → (𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  {csn 4592   cuni 4874   class class class wbr 5110  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390   Er wer 8671  [cec 8672  0cc0 11075  1c1 11076  cmin 11412  [,]cicc 13316  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873  TopOnctopon 22804   Cn ccn 23118  IIcii 24775  phcphtpc 24875  *𝑝cpco 24907   π1 cpi1 24910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-qus 17479  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-cn 23121  df-cnp 23122  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-ii 24777  df-htpy 24876  df-phtpy 24877  df-phtpc 24898  df-pco 24912  df-om1 24913  df-pi1 24915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator