![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pi1inv | Structured version Visualization version GIF version |
Description: An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
Ref | Expression |
---|---|
pi1grp.2 | β’ πΊ = (π½ Ο1 π) |
pi1inv.n | β’ π = (invgβπΊ) |
pi1inv.j | β’ (π β π½ β (TopOnβπ)) |
pi1inv.y | β’ (π β π β π) |
pi1inv.f | β’ (π β πΉ β (II Cn π½)) |
pi1inv.0 | β’ (π β (πΉβ0) = π) |
pi1inv.1 | β’ (π β (πΉβ1) = π) |
pi1inv.i | β’ πΌ = (π₯ β (0[,]1) β¦ (πΉβ(1 β π₯))) |
Ref | Expression |
---|---|
pi1inv | β’ (π β (πβ[πΉ]( βphβπ½)) = [πΌ]( βphβπ½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1grp.2 | . . . 4 β’ πΊ = (π½ Ο1 π) | |
2 | eqid 2732 | . . . 4 β’ (BaseβπΊ) = (BaseβπΊ) | |
3 | pi1inv.j | . . . 4 β’ (π β π½ β (TopOnβπ)) | |
4 | pi1inv.y | . . . 4 β’ (π β π β π) | |
5 | eqid 2732 | . . . 4 β’ (+gβπΊ) = (+gβπΊ) | |
6 | pi1inv.f | . . . . . . 7 β’ (π β πΉ β (II Cn π½)) | |
7 | pi1inv.i | . . . . . . . 8 β’ πΌ = (π₯ β (0[,]1) β¦ (πΉβ(1 β π₯))) | |
8 | 7 | pcorevcl 24765 | . . . . . . 7 β’ (πΉ β (II Cn π½) β (πΌ β (II Cn π½) β§ (πΌβ0) = (πΉβ1) β§ (πΌβ1) = (πΉβ0))) |
9 | 6, 8 | syl 17 | . . . . . 6 β’ (π β (πΌ β (II Cn π½) β§ (πΌβ0) = (πΉβ1) β§ (πΌβ1) = (πΉβ0))) |
10 | 9 | simp1d 1142 | . . . . 5 β’ (π β πΌ β (II Cn π½)) |
11 | 9 | simp2d 1143 | . . . . . 6 β’ (π β (πΌβ0) = (πΉβ1)) |
12 | pi1inv.1 | . . . . . 6 β’ (π β (πΉβ1) = π) | |
13 | 11, 12 | eqtrd 2772 | . . . . 5 β’ (π β (πΌβ0) = π) |
14 | 9 | simp3d 1144 | . . . . . 6 β’ (π β (πΌβ1) = (πΉβ0)) |
15 | pi1inv.0 | . . . . . 6 β’ (π β (πΉβ0) = π) | |
16 | 14, 15 | eqtrd 2772 | . . . . 5 β’ (π β (πΌβ1) = π) |
17 | 2 | a1i 11 | . . . . . 6 β’ (π β (BaseβπΊ) = (BaseβπΊ)) |
18 | 1, 3, 4, 17 | pi1eluni 24782 | . . . . 5 β’ (π β (πΌ β βͺ (BaseβπΊ) β (πΌ β (II Cn π½) β§ (πΌβ0) = π β§ (πΌβ1) = π))) |
19 | 10, 13, 16, 18 | mpbir3and 1342 | . . . 4 β’ (π β πΌ β βͺ (BaseβπΊ)) |
20 | 1, 3, 4, 17 | pi1eluni 24782 | . . . . 5 β’ (π β (πΉ β βͺ (BaseβπΊ) β (πΉ β (II Cn π½) β§ (πΉβ0) = π β§ (πΉβ1) = π))) |
21 | 6, 15, 12, 20 | mpbir3and 1342 | . . . 4 β’ (π β πΉ β βͺ (BaseβπΊ)) |
22 | 1, 2, 3, 4, 5, 19, 21 | pi1addval 24788 | . . 3 β’ (π β ([πΌ]( βphβπ½)(+gβπΊ)[πΉ]( βphβπ½)) = [(πΌ(*πβπ½)πΉ)]( βphβπ½)) |
23 | phtpcer 24735 | . . . . 5 β’ ( βphβπ½) Er (II Cn π½) | |
24 | 23 | a1i 11 | . . . 4 β’ (π β ( βphβπ½) Er (II Cn π½)) |
25 | eqid 2732 | . . . . . . 7 β’ ((0[,]1) Γ {(πΉβ1)}) = ((0[,]1) Γ {(πΉβ1)}) | |
26 | 7, 25 | pcorev 24767 | . . . . . 6 β’ (πΉ β (II Cn π½) β (πΌ(*πβπ½)πΉ)( βphβπ½)((0[,]1) Γ {(πΉβ1)})) |
27 | 6, 26 | syl 17 | . . . . 5 β’ (π β (πΌ(*πβπ½)πΉ)( βphβπ½)((0[,]1) Γ {(πΉβ1)})) |
28 | 12 | sneqd 4640 | . . . . . 6 β’ (π β {(πΉβ1)} = {π}) |
29 | 28 | xpeq2d 5706 | . . . . 5 β’ (π β ((0[,]1) Γ {(πΉβ1)}) = ((0[,]1) Γ {π})) |
30 | 27, 29 | breqtrd 5174 | . . . 4 β’ (π β (πΌ(*πβπ½)πΉ)( βphβπ½)((0[,]1) Γ {π})) |
31 | 24, 30 | erthi 8756 | . . 3 β’ (π β [(πΌ(*πβπ½)πΉ)]( βphβπ½) = [((0[,]1) Γ {π})]( βphβπ½)) |
32 | eqid 2732 | . . . . 5 β’ ((0[,]1) Γ {π}) = ((0[,]1) Γ {π}) | |
33 | 1, 2, 3, 4, 32 | pi1grplem 24789 | . . . 4 β’ (π β (πΊ β Grp β§ [((0[,]1) Γ {π})]( βphβπ½) = (0gβπΊ))) |
34 | 33 | simprd 496 | . . 3 β’ (π β [((0[,]1) Γ {π})]( βphβπ½) = (0gβπΊ)) |
35 | 22, 31, 34 | 3eqtrd 2776 | . 2 β’ (π β ([πΌ]( βphβπ½)(+gβπΊ)[πΉ]( βphβπ½)) = (0gβπΊ)) |
36 | 33 | simpld 495 | . . 3 β’ (π β πΊ β Grp) |
37 | 1, 2, 3, 4, 6, 15, 12 | elpi1i 24786 | . . 3 β’ (π β [πΉ]( βphβπ½) β (BaseβπΊ)) |
38 | 1, 2, 3, 4, 10, 13, 16 | elpi1i 24786 | . . 3 β’ (π β [πΌ]( βphβπ½) β (BaseβπΊ)) |
39 | eqid 2732 | . . . 4 β’ (0gβπΊ) = (0gβπΊ) | |
40 | pi1inv.n | . . . 4 β’ π = (invgβπΊ) | |
41 | 2, 5, 39, 40 | grpinvid2 18913 | . . 3 β’ ((πΊ β Grp β§ [πΉ]( βphβπ½) β (BaseβπΊ) β§ [πΌ]( βphβπ½) β (BaseβπΊ)) β ((πβ[πΉ]( βphβπ½)) = [πΌ]( βphβπ½) β ([πΌ]( βphβπ½)(+gβπΊ)[πΉ]( βphβπ½)) = (0gβπΊ))) |
42 | 36, 37, 38, 41 | syl3anc 1371 | . 2 β’ (π β ((πβ[πΉ]( βphβπ½)) = [πΌ]( βphβπ½) β ([πΌ]( βphβπ½)(+gβπΊ)[πΉ]( βphβπ½)) = (0gβπΊ))) |
43 | 35, 42 | mpbird 256 | 1 β’ (π β (πβ[πΉ]( βphβπ½)) = [πΌ]( βphβπ½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1087 = wceq 1541 β wcel 2106 {csn 4628 βͺ cuni 4908 class class class wbr 5148 β¦ cmpt 5231 Γ cxp 5674 βcfv 6543 (class class class)co 7411 Er wer 8702 [cec 8703 0cc0 11112 1c1 11113 β cmin 11448 [,]cicc 13331 Basecbs 17148 +gcplusg 17201 0gc0g 17389 Grpcgrp 18855 invgcminusg 18856 TopOnctopon 22632 Cn ccn 22948 IIcii 24615 βphcphtpc 24709 *πcpco 24740 Ο1 cpi1 24743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-ec 8707 df-qs 8711 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-icc 13335 df-fz 13489 df-fzo 13632 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-qus 17459 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-cn 22951 df-cnp 22952 df-tx 23286 df-hmeo 23479 df-xms 24046 df-ms 24047 df-tms 24048 df-ii 24617 df-htpy 24710 df-phtpy 24711 df-phtpc 24732 df-pco 24745 df-om1 24746 df-pi1 24748 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |