MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1inv Structured version   Visualization version   GIF version

Theorem pi1inv 25085
Description: An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.)
Hypotheses
Ref Expression
pi1grp.2 𝐺 = (𝐽 π1 𝑌)
pi1inv.n 𝑁 = (invg𝐺)
pi1inv.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1inv.y (𝜑𝑌𝑋)
pi1inv.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1inv.0 (𝜑 → (𝐹‘0) = 𝑌)
pi1inv.1 (𝜑 → (𝐹‘1) = 𝑌)
pi1inv.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
Assertion
Ref Expression
pi1inv (𝜑 → (𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝜑,𝑥   𝑥,𝑌
Allowed substitution hints:   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem pi1inv
StepHypRef Expression
1 pi1grp.2 . . . 4 𝐺 = (𝐽 π1 𝑌)
2 eqid 2737 . . . 4 (Base‘𝐺) = (Base‘𝐺)
3 pi1inv.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 pi1inv.y . . . 4 (𝜑𝑌𝑋)
5 eqid 2737 . . . 4 (+g𝐺) = (+g𝐺)
6 pi1inv.f . . . . . . 7 (𝜑𝐹 ∈ (II Cn 𝐽))
7 pi1inv.i . . . . . . . 8 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
87pcorevcl 25058 . . . . . . 7 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
96, 8syl 17 . . . . . 6 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
109simp1d 1143 . . . . 5 (𝜑𝐼 ∈ (II Cn 𝐽))
119simp2d 1144 . . . . . 6 (𝜑 → (𝐼‘0) = (𝐹‘1))
12 pi1inv.1 . . . . . 6 (𝜑 → (𝐹‘1) = 𝑌)
1311, 12eqtrd 2777 . . . . 5 (𝜑 → (𝐼‘0) = 𝑌)
149simp3d 1145 . . . . . 6 (𝜑 → (𝐼‘1) = (𝐹‘0))
15 pi1inv.0 . . . . . 6 (𝜑 → (𝐹‘0) = 𝑌)
1614, 15eqtrd 2777 . . . . 5 (𝜑 → (𝐼‘1) = 𝑌)
172a1i 11 . . . . . 6 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
181, 3, 4, 17pi1eluni 25075 . . . . 5 (𝜑 → (𝐼 (Base‘𝐺) ↔ (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = 𝑌 ∧ (𝐼‘1) = 𝑌)))
1910, 13, 16, 18mpbir3and 1343 . . . 4 (𝜑𝐼 (Base‘𝐺))
201, 3, 4, 17pi1eluni 25075 . . . . 5 (𝜑 → (𝐹 (Base‘𝐺) ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌)))
216, 15, 12, 20mpbir3and 1343 . . . 4 (𝜑𝐹 (Base‘𝐺))
221, 2, 3, 4, 5, 19, 21pi1addval 25081 . . 3 (𝜑 → ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)𝐹)]( ≃ph𝐽))
23 phtpcer 25027 . . . . 5 ( ≃ph𝐽) Er (II Cn 𝐽)
2423a1i 11 . . . 4 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
25 eqid 2737 . . . . . . 7 ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {(𝐹‘1)})
267, 25pcorev 25060 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → (𝐼(*𝑝𝐽)𝐹)( ≃ph𝐽)((0[,]1) × {(𝐹‘1)}))
276, 26syl 17 . . . . 5 (𝜑 → (𝐼(*𝑝𝐽)𝐹)( ≃ph𝐽)((0[,]1) × {(𝐹‘1)}))
2812sneqd 4638 . . . . . 6 (𝜑 → {(𝐹‘1)} = {𝑌})
2928xpeq2d 5715 . . . . 5 (𝜑 → ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {𝑌}))
3027, 29breqtrd 5169 . . . 4 (𝜑 → (𝐼(*𝑝𝐽)𝐹)( ≃ph𝐽)((0[,]1) × {𝑌}))
3124, 30erthi 8798 . . 3 (𝜑 → [(𝐼(*𝑝𝐽)𝐹)]( ≃ph𝐽) = [((0[,]1) × {𝑌})]( ≃ph𝐽))
32 eqid 2737 . . . . 5 ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌})
331, 2, 3, 4, 32pi1grplem 25082 . . . 4 (𝜑 → (𝐺 ∈ Grp ∧ [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g𝐺)))
3433simprd 495 . . 3 (𝜑 → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g𝐺))
3522, 31, 343eqtrd 2781 . 2 (𝜑 → ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = (0g𝐺))
3633simpld 494 . . 3 (𝜑𝐺 ∈ Grp)
371, 2, 3, 4, 6, 15, 12elpi1i 25079 . . 3 (𝜑 → [𝐹]( ≃ph𝐽) ∈ (Base‘𝐺))
381, 2, 3, 4, 10, 13, 16elpi1i 25079 . . 3 (𝜑 → [𝐼]( ≃ph𝐽) ∈ (Base‘𝐺))
39 eqid 2737 . . . 4 (0g𝐺) = (0g𝐺)
40 pi1inv.n . . . 4 𝑁 = (invg𝐺)
412, 5, 39, 40grpinvid2 19010 . . 3 ((𝐺 ∈ Grp ∧ [𝐹]( ≃ph𝐽) ∈ (Base‘𝐺) ∧ [𝐼]( ≃ph𝐽) ∈ (Base‘𝐺)) → ((𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽) ↔ ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = (0g𝐺)))
4236, 37, 38, 41syl3anc 1373 . 2 (𝜑 → ((𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽) ↔ ([𝐼]( ≃ph𝐽)(+g𝐺)[𝐹]( ≃ph𝐽)) = (0g𝐺)))
4335, 42mpbird 257 1 (𝜑 → (𝑁‘[𝐹]( ≃ph𝐽)) = [𝐼]( ≃ph𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  {csn 4626   cuni 4907   class class class wbr 5143  cmpt 5225   × cxp 5683  cfv 6561  (class class class)co 7431   Er wer 8742  [cec 8743  0cc0 11155  1c1 11156  cmin 11492  [,]cicc 13390  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952  TopOnctopon 22916   Cn ccn 23232  IIcii 24901  phcphtpc 25001  *𝑝cpco 25033   π1 cpi1 25036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-qus 17554  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-ii 24903  df-htpy 25002  df-phtpy 25003  df-phtpc 25024  df-pco 25038  df-om1 25039  df-pi1 25041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator