Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pi1inv | Structured version Visualization version GIF version |
Description: An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
Ref | Expression |
---|---|
pi1grp.2 | ⊢ 𝐺 = (𝐽 π1 𝑌) |
pi1inv.n | ⊢ 𝑁 = (invg‘𝐺) |
pi1inv.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1inv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1inv.f | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pi1inv.0 | ⊢ (𝜑 → (𝐹‘0) = 𝑌) |
pi1inv.1 | ⊢ (𝜑 → (𝐹‘1) = 𝑌) |
pi1inv.i | ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
Ref | Expression |
---|---|
pi1inv | ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1grp.2 | . . . 4 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
2 | eqid 2740 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | pi1inv.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
4 | pi1inv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
5 | eqid 2740 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | pi1inv.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
7 | pi1inv.i | . . . . . . . 8 ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) | |
8 | 7 | pcorevcl 24184 | . . . . . . 7 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
10 | 9 | simp1d 1141 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
11 | 9 | simp2d 1142 | . . . . . 6 ⊢ (𝜑 → (𝐼‘0) = (𝐹‘1)) |
12 | pi1inv.1 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) = 𝑌) | |
13 | 11, 12 | eqtrd 2780 | . . . . 5 ⊢ (𝜑 → (𝐼‘0) = 𝑌) |
14 | 9 | simp3d 1143 | . . . . . 6 ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) |
15 | pi1inv.0 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) = 𝑌) | |
16 | 14, 15 | eqtrd 2780 | . . . . 5 ⊢ (𝜑 → (𝐼‘1) = 𝑌) |
17 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
18 | 1, 3, 4, 17 | pi1eluni 24201 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ ∪ (Base‘𝐺) ↔ (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = 𝑌 ∧ (𝐼‘1) = 𝑌))) |
19 | 10, 13, 16, 18 | mpbir3and 1341 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ∪ (Base‘𝐺)) |
20 | 1, 3, 4, 17 | pi1eluni 24201 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ ∪ (Base‘𝐺) ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
21 | 6, 15, 12, 20 | mpbir3and 1341 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ∪ (Base‘𝐺)) |
22 | 1, 2, 3, 4, 5, 19, 21 | pi1addval 24207 | . . 3 ⊢ (𝜑 → ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)𝐹)]( ≃ph‘𝐽)) |
23 | phtpcer 24154 | . . . . 5 ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → ( ≃ph‘𝐽) Er (II Cn 𝐽)) |
25 | eqid 2740 | . . . . . . 7 ⊢ ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {(𝐹‘1)}) | |
26 | 7, 25 | pcorev 24186 | . . . . . 6 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘1)})) |
27 | 6, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘1)})) |
28 | 12 | sneqd 4579 | . . . . . 6 ⊢ (𝜑 → {(𝐹‘1)} = {𝑌}) |
29 | 28 | xpeq2d 5619 | . . . . 5 ⊢ (𝜑 → ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {𝑌})) |
30 | 27, 29 | breqtrd 5105 | . . . 4 ⊢ (𝜑 → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {𝑌})) |
31 | 24, 30 | erthi 8530 | . . 3 ⊢ (𝜑 → [(𝐼(*𝑝‘𝐽)𝐹)]( ≃ph‘𝐽) = [((0[,]1) × {𝑌})]( ≃ph‘𝐽)) |
32 | eqid 2740 | . . . . 5 ⊢ ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌}) | |
33 | 1, 2, 3, 4, 32 | pi1grplem 24208 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ Grp ∧ [((0[,]1) × {𝑌})]( ≃ph‘𝐽) = (0g‘𝐺))) |
34 | 33 | simprd 496 | . . 3 ⊢ (𝜑 → [((0[,]1) × {𝑌})]( ≃ph‘𝐽) = (0g‘𝐺)) |
35 | 22, 31, 34 | 3eqtrd 2784 | . 2 ⊢ (𝜑 → ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺)) |
36 | 33 | simpld 495 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
37 | 1, 2, 3, 4, 6, 15, 12 | elpi1i 24205 | . . 3 ⊢ (𝜑 → [𝐹]( ≃ph‘𝐽) ∈ (Base‘𝐺)) |
38 | 1, 2, 3, 4, 10, 13, 16 | elpi1i 24205 | . . 3 ⊢ (𝜑 → [𝐼]( ≃ph‘𝐽) ∈ (Base‘𝐺)) |
39 | eqid 2740 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
40 | pi1inv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
41 | 2, 5, 39, 40 | grpinvid2 18627 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ [𝐹]( ≃ph‘𝐽) ∈ (Base‘𝐺) ∧ [𝐼]( ≃ph‘𝐽) ∈ (Base‘𝐺)) → ((𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽) ↔ ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺))) |
42 | 36, 37, 38, 41 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽) ↔ ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺))) |
43 | 35, 42 | mpbird 256 | 1 ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 {csn 4567 ∪ cuni 4845 class class class wbr 5079 ↦ cmpt 5162 × cxp 5587 ‘cfv 6431 (class class class)co 7269 Er wer 8476 [cec 8477 0cc0 10870 1c1 10871 − cmin 11203 [,]cicc 13079 Basecbs 16908 +gcplusg 16958 0gc0g 17146 Grpcgrp 18573 invgcminusg 18574 TopOnctopon 22055 Cn ccn 22371 IIcii 24034 ≃phcphtpc 24128 *𝑝cpco 24159 π1 cpi1 24162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 ax-pre-sup 10948 ax-addf 10949 ax-mulf 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7705 df-1st 7822 df-2nd 7823 df-supp 7967 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-2o 8287 df-er 8479 df-ec 8481 df-qs 8485 df-map 8598 df-ixp 8667 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-fsupp 9105 df-fi 9146 df-sup 9177 df-inf 9178 df-oi 9245 df-card 9696 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-dec 12435 df-uz 12580 df-q 12686 df-rp 12728 df-xneg 12845 df-xadd 12846 df-xmul 12847 df-ioo 13080 df-icc 13083 df-fz 13237 df-fzo 13380 df-seq 13718 df-exp 13779 df-hash 14041 df-cj 14806 df-re 14807 df-im 14808 df-sqrt 14942 df-abs 14943 df-struct 16844 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-ress 16938 df-plusg 16971 df-mulr 16972 df-starv 16973 df-sca 16974 df-vsca 16975 df-ip 16976 df-tset 16977 df-ple 16978 df-ds 16980 df-unif 16981 df-hom 16982 df-cco 16983 df-rest 17129 df-topn 17130 df-0g 17148 df-gsum 17149 df-topgen 17150 df-pt 17151 df-prds 17154 df-xrs 17209 df-qtop 17214 df-imas 17215 df-qus 17216 df-xps 17217 df-mre 17291 df-mrc 17292 df-acs 17294 df-mgm 18322 df-sgrp 18371 df-mnd 18382 df-submnd 18427 df-grp 18576 df-minusg 18577 df-mulg 18697 df-cntz 18919 df-cmn 19384 df-psmet 20585 df-xmet 20586 df-met 20587 df-bl 20588 df-mopn 20589 df-cnfld 20594 df-top 22039 df-topon 22056 df-topsp 22078 df-bases 22092 df-cld 22166 df-cn 22374 df-cnp 22375 df-tx 22709 df-hmeo 22902 df-xms 23469 df-ms 23470 df-tms 23471 df-ii 24036 df-htpy 24129 df-phtpy 24130 df-phtpc 24151 df-pco 24164 df-om1 24165 df-pi1 24167 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |