| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1inv | Structured version Visualization version GIF version | ||
| Description: An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| Ref | Expression |
|---|---|
| pi1grp.2 | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| pi1inv.n | ⊢ 𝑁 = (invg‘𝐺) |
| pi1inv.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| pi1inv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1inv.f | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| pi1inv.0 | ⊢ (𝜑 → (𝐹‘0) = 𝑌) |
| pi1inv.1 | ⊢ (𝜑 → (𝐹‘1) = 𝑌) |
| pi1inv.i | ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
| Ref | Expression |
|---|---|
| pi1inv | ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pi1grp.2 | . . . 4 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
| 2 | eqid 2736 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | pi1inv.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 4 | pi1inv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 5 | eqid 2736 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | pi1inv.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 7 | pi1inv.i | . . . . . . . 8 ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) | |
| 8 | 7 | pcorevcl 24981 | . . . . . . 7 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
| 9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
| 10 | 9 | simp1d 1142 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
| 11 | 9 | simp2d 1143 | . . . . . 6 ⊢ (𝜑 → (𝐼‘0) = (𝐹‘1)) |
| 12 | pi1inv.1 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) = 𝑌) | |
| 13 | 11, 12 | eqtrd 2771 | . . . . 5 ⊢ (𝜑 → (𝐼‘0) = 𝑌) |
| 14 | 9 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) |
| 15 | pi1inv.0 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) = 𝑌) | |
| 16 | 14, 15 | eqtrd 2771 | . . . . 5 ⊢ (𝜑 → (𝐼‘1) = 𝑌) |
| 17 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
| 18 | 1, 3, 4, 17 | pi1eluni 24998 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ ∪ (Base‘𝐺) ↔ (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = 𝑌 ∧ (𝐼‘1) = 𝑌))) |
| 19 | 10, 13, 16, 18 | mpbir3and 1343 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ∪ (Base‘𝐺)) |
| 20 | 1, 3, 4, 17 | pi1eluni 24998 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ ∪ (Base‘𝐺) ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
| 21 | 6, 15, 12, 20 | mpbir3and 1343 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ∪ (Base‘𝐺)) |
| 22 | 1, 2, 3, 4, 5, 19, 21 | pi1addval 25004 | . . 3 ⊢ (𝜑 → ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)𝐹)]( ≃ph‘𝐽)) |
| 23 | phtpcer 24950 | . . . . 5 ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → ( ≃ph‘𝐽) Er (II Cn 𝐽)) |
| 25 | eqid 2736 | . . . . . . 7 ⊢ ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {(𝐹‘1)}) | |
| 26 | 7, 25 | pcorev 24983 | . . . . . 6 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘1)})) |
| 27 | 6, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘1)})) |
| 28 | 12 | sneqd 4618 | . . . . . 6 ⊢ (𝜑 → {(𝐹‘1)} = {𝑌}) |
| 29 | 28 | xpeq2d 5689 | . . . . 5 ⊢ (𝜑 → ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {𝑌})) |
| 30 | 27, 29 | breqtrd 5150 | . . . 4 ⊢ (𝜑 → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {𝑌})) |
| 31 | 24, 30 | erthi 8777 | . . 3 ⊢ (𝜑 → [(𝐼(*𝑝‘𝐽)𝐹)]( ≃ph‘𝐽) = [((0[,]1) × {𝑌})]( ≃ph‘𝐽)) |
| 32 | eqid 2736 | . . . . 5 ⊢ ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌}) | |
| 33 | 1, 2, 3, 4, 32 | pi1grplem 25005 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ Grp ∧ [((0[,]1) × {𝑌})]( ≃ph‘𝐽) = (0g‘𝐺))) |
| 34 | 33 | simprd 495 | . . 3 ⊢ (𝜑 → [((0[,]1) × {𝑌})]( ≃ph‘𝐽) = (0g‘𝐺)) |
| 35 | 22, 31, 34 | 3eqtrd 2775 | . 2 ⊢ (𝜑 → ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺)) |
| 36 | 33 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 37 | 1, 2, 3, 4, 6, 15, 12 | elpi1i 25002 | . . 3 ⊢ (𝜑 → [𝐹]( ≃ph‘𝐽) ∈ (Base‘𝐺)) |
| 38 | 1, 2, 3, 4, 10, 13, 16 | elpi1i 25002 | . . 3 ⊢ (𝜑 → [𝐼]( ≃ph‘𝐽) ∈ (Base‘𝐺)) |
| 39 | eqid 2736 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 40 | pi1inv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 41 | 2, 5, 39, 40 | grpinvid2 18980 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ [𝐹]( ≃ph‘𝐽) ∈ (Base‘𝐺) ∧ [𝐼]( ≃ph‘𝐽) ∈ (Base‘𝐺)) → ((𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽) ↔ ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺))) |
| 42 | 36, 37, 38, 41 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽) ↔ ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺))) |
| 43 | 35, 42 | mpbird 257 | 1 ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4606 ∪ cuni 4888 class class class wbr 5124 ↦ cmpt 5206 × cxp 5657 ‘cfv 6536 (class class class)co 7410 Er wer 8721 [cec 8722 0cc0 11134 1c1 11135 − cmin 11471 [,]cicc 13370 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Grpcgrp 18921 invgcminusg 18922 TopOnctopon 22853 Cn ccn 23167 IIcii 24824 ≃phcphtpc 24924 *𝑝cpco 24956 π1 cpi1 24959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-ec 8726 df-qs 8730 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-qus 17528 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-cn 23170 df-cnp 23171 df-tx 23505 df-hmeo 23698 df-xms 24264 df-ms 24265 df-tms 24266 df-ii 24826 df-htpy 24925 df-phtpy 24926 df-phtpc 24947 df-pco 24961 df-om1 24962 df-pi1 24964 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |