| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1inv | Structured version Visualization version GIF version | ||
| Description: An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| Ref | Expression |
|---|---|
| pi1grp.2 | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| pi1inv.n | ⊢ 𝑁 = (invg‘𝐺) |
| pi1inv.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| pi1inv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1inv.f | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| pi1inv.0 | ⊢ (𝜑 → (𝐹‘0) = 𝑌) |
| pi1inv.1 | ⊢ (𝜑 → (𝐹‘1) = 𝑌) |
| pi1inv.i | ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
| Ref | Expression |
|---|---|
| pi1inv | ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pi1grp.2 | . . . 4 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | pi1inv.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 4 | pi1inv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 5 | eqid 2731 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | pi1inv.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 7 | pi1inv.i | . . . . . . . 8 ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) | |
| 8 | 7 | pcorevcl 24952 | . . . . . . 7 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
| 9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
| 10 | 9 | simp1d 1142 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
| 11 | 9 | simp2d 1143 | . . . . . 6 ⊢ (𝜑 → (𝐼‘0) = (𝐹‘1)) |
| 12 | pi1inv.1 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) = 𝑌) | |
| 13 | 11, 12 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → (𝐼‘0) = 𝑌) |
| 14 | 9 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) |
| 15 | pi1inv.0 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) = 𝑌) | |
| 16 | 14, 15 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → (𝐼‘1) = 𝑌) |
| 17 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
| 18 | 1, 3, 4, 17 | pi1eluni 24969 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ ∪ (Base‘𝐺) ↔ (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = 𝑌 ∧ (𝐼‘1) = 𝑌))) |
| 19 | 10, 13, 16, 18 | mpbir3and 1343 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ∪ (Base‘𝐺)) |
| 20 | 1, 3, 4, 17 | pi1eluni 24969 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ ∪ (Base‘𝐺) ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
| 21 | 6, 15, 12, 20 | mpbir3and 1343 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ∪ (Base‘𝐺)) |
| 22 | 1, 2, 3, 4, 5, 19, 21 | pi1addval 24975 | . . 3 ⊢ (𝜑 → ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)𝐹)]( ≃ph‘𝐽)) |
| 23 | phtpcer 24921 | . . . . 5 ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → ( ≃ph‘𝐽) Er (II Cn 𝐽)) |
| 25 | eqid 2731 | . . . . . . 7 ⊢ ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {(𝐹‘1)}) | |
| 26 | 7, 25 | pcorev 24954 | . . . . . 6 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘1)})) |
| 27 | 6, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {(𝐹‘1)})) |
| 28 | 12 | sneqd 4585 | . . . . . 6 ⊢ (𝜑 → {(𝐹‘1)} = {𝑌}) |
| 29 | 28 | xpeq2d 5644 | . . . . 5 ⊢ (𝜑 → ((0[,]1) × {(𝐹‘1)}) = ((0[,]1) × {𝑌})) |
| 30 | 27, 29 | breqtrd 5115 | . . . 4 ⊢ (𝜑 → (𝐼(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)((0[,]1) × {𝑌})) |
| 31 | 24, 30 | erthi 8678 | . . 3 ⊢ (𝜑 → [(𝐼(*𝑝‘𝐽)𝐹)]( ≃ph‘𝐽) = [((0[,]1) × {𝑌})]( ≃ph‘𝐽)) |
| 32 | eqid 2731 | . . . . 5 ⊢ ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌}) | |
| 33 | 1, 2, 3, 4, 32 | pi1grplem 24976 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ Grp ∧ [((0[,]1) × {𝑌})]( ≃ph‘𝐽) = (0g‘𝐺))) |
| 34 | 33 | simprd 495 | . . 3 ⊢ (𝜑 → [((0[,]1) × {𝑌})]( ≃ph‘𝐽) = (0g‘𝐺)) |
| 35 | 22, 31, 34 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺)) |
| 36 | 33 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 37 | 1, 2, 3, 4, 6, 15, 12 | elpi1i 24973 | . . 3 ⊢ (𝜑 → [𝐹]( ≃ph‘𝐽) ∈ (Base‘𝐺)) |
| 38 | 1, 2, 3, 4, 10, 13, 16 | elpi1i 24973 | . . 3 ⊢ (𝜑 → [𝐼]( ≃ph‘𝐽) ∈ (Base‘𝐺)) |
| 39 | eqid 2731 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 40 | pi1inv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 41 | 2, 5, 39, 40 | grpinvid2 18905 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ [𝐹]( ≃ph‘𝐽) ∈ (Base‘𝐺) ∧ [𝐼]( ≃ph‘𝐽) ∈ (Base‘𝐺)) → ((𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽) ↔ ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺))) |
| 42 | 36, 37, 38, 41 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽) ↔ ([𝐼]( ≃ph‘𝐽)(+g‘𝐺)[𝐹]( ≃ph‘𝐽)) = (0g‘𝐺))) |
| 43 | 35, 42 | mpbird 257 | 1 ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {csn 4573 ∪ cuni 4856 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 (class class class)co 7346 Er wer 8619 [cec 8620 0cc0 11006 1c1 11007 − cmin 11344 [,]cicc 13248 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18846 invgcminusg 18847 TopOnctopon 22825 Cn ccn 23139 IIcii 24795 ≃phcphtpc 24895 *𝑝cpco 24927 π1 cpi1 24930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-qus 17413 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-cn 23142 df-cnp 23143 df-tx 23477 df-hmeo 23670 df-xms 24235 df-ms 24236 df-tms 24237 df-ii 24797 df-htpy 24896 df-phtpy 24897 df-phtpc 24918 df-pco 24932 df-om1 24933 df-pi1 24935 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |