|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > blpnfctr | Structured version Visualization version GIF version | ||
| Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| blpnfctr | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (◡𝐷 “ ℝ) = (◡𝐷 “ ℝ) | |
| 2 | 1 | xmeter 24444 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (◡𝐷 “ ℝ) Er 𝑋) | 
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (◡𝐷 “ ℝ) Er 𝑋) | 
| 4 | simp3 1138 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) | |
| 5 | 1 | xmetec 24445 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃](◡𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞)) | 
| 6 | 5 | 3adant3 1132 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](◡𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞)) | 
| 7 | 4, 6 | eleqtrrd 2843 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ [𝑃](◡𝐷 “ ℝ)) | 
| 8 | elecg 8790 | . . . . . 6 ⊢ ((𝐴 ∈ (𝑃(ball‘𝐷)+∞) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝐴)) | |
| 9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝐴)) | 
| 10 | 9 | 3adant1 1130 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝐴)) | 
| 11 | 7, 10 | mpbid 232 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝑃(◡𝐷 “ ℝ)𝐴) | 
| 12 | 3, 11 | erthi 8799 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](◡𝐷 “ ℝ) = [𝐴](◡𝐷 “ ℝ)) | 
| 13 | pnfxr 11316 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 14 | blssm 24429 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ +∞ ∈ ℝ*) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋) | |
| 15 | 13, 14 | mp3an3 1451 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋) | 
| 16 | 15 | sselda 3982 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ 𝑋) | 
| 17 | 1 | xmetec 24445 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) | 
| 18 | 17 | adantlr 715 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) | 
| 19 | 16, 18 | syldan 591 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) | 
| 20 | 19 | 3impa 1109 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) | 
| 21 | 12, 6, 20 | 3eqtr3d 2784 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 class class class wbr 5142 ◡ccnv 5683 “ cima 5687 ‘cfv 6560 (class class class)co 7432 Er wer 8743 [cec 8744 ℝcr 11155 +∞cpnf 11293 ℝ*cxr 11295 ∞Metcxmet 21350 ballcbl 21352 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-ec 8748 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-2 12330 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-psmet 21357 df-xmet 21358 df-bl 21360 | 
| This theorem is referenced by: metdstri 24874 | 
| Copyright terms: Public domain | W3C validator |