![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blpnfctr | Structured version Visualization version GIF version |
Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
blpnfctr | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2826 | . . . . 5 ⊢ (◡𝐷 “ ℝ) = (◡𝐷 “ ℝ) | |
2 | 1 | xmeter 22609 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (◡𝐷 “ ℝ) Er 𝑋) |
3 | 2 | 3ad2ant1 1169 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (◡𝐷 “ ℝ) Er 𝑋) |
4 | simp3 1174 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) | |
5 | 1 | xmetec 22610 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃](◡𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞)) |
6 | 5 | 3adant3 1168 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](◡𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞)) |
7 | 4, 6 | eleqtrrd 2910 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ [𝑃](◡𝐷 “ ℝ)) |
8 | elecg 8051 | . . . . . 6 ⊢ ((𝐴 ∈ (𝑃(ball‘𝐷)+∞) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝐴)) | |
9 | 8 | ancoms 452 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝐴)) |
10 | 9 | 3adant1 1166 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝐴)) |
11 | 7, 10 | mpbid 224 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝑃(◡𝐷 “ ℝ)𝐴) |
12 | 3, 11 | erthi 8059 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](◡𝐷 “ ℝ) = [𝐴](◡𝐷 “ ℝ)) |
13 | pnfxr 10411 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
14 | blssm 22594 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ +∞ ∈ ℝ*) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋) | |
15 | 13, 14 | mp3an3 1580 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋) |
16 | 15 | sselda 3828 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ 𝑋) |
17 | 1 | xmetec 22610 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) |
18 | 17 | adantlr 708 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) |
19 | 16, 18 | syldan 587 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) |
20 | 19 | 3impa 1142 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) |
21 | 12, 6, 20 | 3eqtr3d 2870 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ⊆ wss 3799 class class class wbr 4874 ◡ccnv 5342 “ cima 5346 ‘cfv 6124 (class class class)co 6906 Er wer 8007 [cec 8008 ℝcr 10252 +∞cpnf 10389 ℝ*cxr 10391 ∞Metcxmet 20092 ballcbl 20094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-po 5264 df-so 5265 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-1st 7429 df-2nd 7430 df-er 8010 df-ec 8012 df-map 8125 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-2 11415 df-rp 12114 df-xneg 12233 df-xadd 12234 df-xmul 12235 df-psmet 20099 df-xmet 20100 df-bl 20102 |
This theorem is referenced by: metdstri 23025 |
Copyright terms: Public domain | W3C validator |