| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > blpnfctr | Structured version Visualization version GIF version | ||
| Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| blpnfctr | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ (◡𝐷 “ ℝ) = (◡𝐷 “ ℝ) | |
| 2 | 1 | xmeter 24341 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (◡𝐷 “ ℝ) Er 𝑋) |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (◡𝐷 “ ℝ) Er 𝑋) |
| 4 | simp3 1138 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) | |
| 5 | 1 | xmetec 24342 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃](◡𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞)) |
| 6 | 5 | 3adant3 1132 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](◡𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞)) |
| 7 | 4, 6 | eleqtrrd 2832 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ [𝑃](◡𝐷 “ ℝ)) |
| 8 | elecg 8661 | . . . . . 6 ⊢ ((𝐴 ∈ (𝑃(ball‘𝐷)+∞) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝐴)) | |
| 9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝐴)) |
| 10 | 9 | 3adant1 1130 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](◡𝐷 “ ℝ) ↔ 𝑃(◡𝐷 “ ℝ)𝐴)) |
| 11 | 7, 10 | mpbid 232 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝑃(◡𝐷 “ ℝ)𝐴) |
| 12 | 3, 11 | erthi 8673 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](◡𝐷 “ ℝ) = [𝐴](◡𝐷 “ ℝ)) |
| 13 | pnfxr 11158 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 14 | blssm 24326 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ +∞ ∈ ℝ*) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋) | |
| 15 | 13, 14 | mp3an3 1452 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋) |
| 16 | 15 | sselda 3932 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ 𝑋) |
| 17 | 1 | xmetec 24342 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) |
| 18 | 17 | adantlr 715 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) |
| 19 | 16, 18 | syldan 591 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) |
| 20 | 19 | 3impa 1109 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](◡𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞)) |
| 21 | 12, 6, 20 | 3eqtr3d 2773 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 class class class wbr 5089 ◡ccnv 5613 “ cima 5617 ‘cfv 6477 (class class class)co 7341 Er wer 8614 [cec 8615 ℝcr 10997 +∞cpnf 11135 ℝ*cxr 11137 ∞Metcxmet 21269 ballcbl 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-ec 8619 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-2 12180 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-psmet 21276 df-xmet 21277 df-bl 21279 |
| This theorem is referenced by: metdstri 24760 |
| Copyright terms: Public domain | W3C validator |