MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blpnfctr Structured version   Visualization version   GIF version

Theorem blpnfctr 22612
Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
blpnfctr ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞))

Proof of Theorem blpnfctr
StepHypRef Expression
1 eqid 2826 . . . . 5 (𝐷 “ ℝ) = (𝐷 “ ℝ)
21xmeter 22609 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 “ ℝ) Er 𝑋)
323ad2ant1 1169 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐷 “ ℝ) Er 𝑋)
4 simp3 1174 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ (𝑃(ball‘𝐷)+∞))
51xmetec 22610 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃](𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞))
653adant3 1168 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞))
74, 6eleqtrrd 2910 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ [𝑃](𝐷 “ ℝ))
8 elecg 8051 . . . . . 6 ((𝐴 ∈ (𝑃(ball‘𝐷)+∞) ∧ 𝑃𝑋) → (𝐴 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝐴))
98ancoms 452 . . . . 5 ((𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝐴))
1093adant1 1166 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝐴))
117, 10mpbid 224 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝑃(𝐷 “ ℝ)𝐴)
123, 11erthi 8059 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](𝐷 “ ℝ) = [𝐴](𝐷 “ ℝ))
13 pnfxr 10411 . . . . . 6 +∞ ∈ ℝ*
14 blssm 22594 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ +∞ ∈ ℝ*) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋)
1513, 14mp3an3 1580 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋)
1615sselda 3828 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴𝑋)
171xmetec 22610 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
1817adantlr 708 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑋) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
1916, 18syldan 587 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
20193impa 1142 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
2112, 6, 203eqtr3d 2870 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wss 3799   class class class wbr 4874  ccnv 5342  cima 5346  cfv 6124  (class class class)co 6906   Er wer 8007  [cec 8008  cr 10252  +∞cpnf 10389  *cxr 10391  ∞Metcxmet 20092  ballcbl 20094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-po 5264  df-so 5265  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-1st 7429  df-2nd 7430  df-er 8010  df-ec 8012  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-2 11415  df-rp 12114  df-xneg 12233  df-xadd 12234  df-xmul 12235  df-psmet 20099  df-xmet 20100  df-bl 20102
This theorem is referenced by:  metdstri  23025
  Copyright terms: Public domain W3C validator