![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpinv | Structured version Visualization version GIF version |
Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpadd.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
frgpadd.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpadd.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
frgpinv.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
Ref | Expression |
---|---|
frgpinv | ⊢ (𝐴 ∈ 𝑊 → (𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpadd.w | . . . . . . . . 9 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | fviss 6999 | . . . . . . . . 9 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
3 | 1, 2 | eqsstri 4043 | . . . . . . . 8 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
4 | 3 | sseli 4004 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ Word (𝐼 × 2o)) |
5 | revcl 14809 | . . . . . . 7 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) |
7 | frgpinv.m | . . . . . . 7 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
8 | 7 | efgmf 19755 | . . . . . 6 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
9 | wrdco 14880 | . . . . . 6 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) | |
10 | 6, 8, 9 | sylancl 585 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) |
11 | 1 | efgrcl 19757 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
12 | 11 | simprd 495 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
13 | 10, 12 | eleqtrrd 2847 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) |
14 | frgpadd.g | . . . . 5 ⊢ 𝐺 = (freeGrp‘𝐼) | |
15 | frgpadd.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
16 | eqid 2740 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 1, 14, 15, 16 | frgpadd 19805 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) → ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] ∼ ) |
18 | 13, 17 | mpdan 686 | . . 3 ⊢ (𝐴 ∈ 𝑊 → ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] ∼ ) |
19 | 1, 15 | efger 19760 | . . . . 5 ⊢ ∼ Er 𝑊 |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → ∼ Er 𝑊) |
21 | eqid 2740 | . . . . 5 ⊢ (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
22 | 1, 15, 7, 21 | efginvrel2 19769 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∼ ∅) |
23 | 20, 22 | erthi 8816 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] ∼ = [∅] ∼ ) |
24 | 14, 15 | frgp0 19802 | . . . . . 6 ⊢ (𝐼 ∈ V → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) |
25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)) → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) |
26 | 11, 25 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) |
27 | 26 | simprd 495 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [∅] ∼ = (0g‘𝐺)) |
28 | 18, 23, 27 | 3eqtrd 2784 | . 2 ⊢ (𝐴 ∈ 𝑊 → ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = (0g‘𝐺)) |
29 | 26 | simpld 494 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐺 ∈ Grp) |
30 | eqid 2740 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
31 | 14, 15, 1, 30 | frgpeccl 19803 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [𝐴] ∼ ∈ (Base‘𝐺)) |
32 | 14, 15, 1, 30 | frgpeccl 19803 | . . . 4 ⊢ ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∼ ∈ (Base‘𝐺)) |
33 | 13, 32 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∼ ∈ (Base‘𝐺)) |
34 | eqid 2740 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
35 | frgpinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
36 | 30, 16, 34, 35 | grpinvid1 19031 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ [𝐴] ∼ ∈ (Base‘𝐺) ∧ [(𝑀 ∘ (reverse‘𝐴))] ∼ ∈ (Base‘𝐺)) → ((𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ↔ ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = (0g‘𝐺))) |
37 | 29, 31, 33, 36 | syl3anc 1371 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ↔ ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = (0g‘𝐺))) |
38 | 28, 37 | mpbird 257 | 1 ⊢ (𝐴 ∈ 𝑊 → (𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 〈cop 4654 〈cotp 4656 ↦ cmpt 5249 I cid 5592 × cxp 5698 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1oc1o 8515 2oc2o 8516 Er wer 8760 [cec 8761 0cc0 11184 ...cfz 13567 ♯chash 14379 Word cword 14562 ++ cconcat 14618 splice csplice 14797 reversecreverse 14806 〈“cs2 14890 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Grpcgrp 18973 invgcminusg 18974 ~FG cefg 19748 freeGrpcfrgp 19749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-lsw 14611 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-splice 14798 df-reverse 14807 df-s2 14897 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-frmd 18884 df-grp 18976 df-minusg 18977 df-efg 19751 df-frgp 19752 |
This theorem is referenced by: vrgpinv 19811 |
Copyright terms: Public domain | W3C validator |