Step | Hyp | Ref
| Expression |
1 | | frgpadd.w |
. . . . . . . . 9
β’ π = ( I βWord (πΌ Γ
2o)) |
2 | | fviss 6968 |
. . . . . . . . 9
β’ ( I
βWord (πΌ Γ
2o)) β Word (πΌ Γ 2o) |
3 | 1, 2 | eqsstri 4016 |
. . . . . . . 8
β’ π β Word (πΌ Γ 2o) |
4 | 3 | sseli 3978 |
. . . . . . 7
β’ (π΄ β π β π΄ β Word (πΌ Γ 2o)) |
5 | | revcl 14715 |
. . . . . . 7
β’ (π΄ β Word (πΌ Γ 2o) β
(reverseβπ΄) β
Word (πΌ Γ
2o)) |
6 | 4, 5 | syl 17 |
. . . . . 6
β’ (π΄ β π β (reverseβπ΄) β Word (πΌ Γ 2o)) |
7 | | frgpinv.m |
. . . . . . 7
β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
8 | 7 | efgmf 19622 |
. . . . . 6
β’ π:(πΌ Γ 2o)βΆ(πΌ Γ
2o) |
9 | | wrdco 14786 |
. . . . . 6
β’
(((reverseβπ΄)
β Word (πΌ Γ
2o) β§ π:(πΌ Γ 2o)βΆ(πΌ Γ 2o)) β
(π β
(reverseβπ΄)) β
Word (πΌ Γ
2o)) |
10 | 6, 8, 9 | sylancl 586 |
. . . . 5
β’ (π΄ β π β (π β (reverseβπ΄)) β Word (πΌ Γ 2o)) |
11 | 1 | efgrcl 19624 |
. . . . . 6
β’ (π΄ β π β (πΌ β V β§ π = Word (πΌ Γ 2o))) |
12 | 11 | simprd 496 |
. . . . 5
β’ (π΄ β π β π = Word (πΌ Γ 2o)) |
13 | 10, 12 | eleqtrrd 2836 |
. . . 4
β’ (π΄ β π β (π β (reverseβπ΄)) β π) |
14 | | frgpadd.g |
. . . . 5
β’ πΊ = (freeGrpβπΌ) |
15 | | frgpadd.r |
. . . . 5
β’ βΌ = (
~FG βπΌ) |
16 | | eqid 2732 |
. . . . 5
β’
(+gβπΊ) = (+gβπΊ) |
17 | 1, 14, 15, 16 | frgpadd 19672 |
. . . 4
β’ ((π΄ β π β§ (π β (reverseβπ΄)) β π) β ([π΄] βΌ
(+gβπΊ)[(π β (reverseβπ΄))] βΌ ) = [(π΄ ++ (π β (reverseβπ΄)))] βΌ ) |
18 | 13, 17 | mpdan 685 |
. . 3
β’ (π΄ β π β ([π΄] βΌ
(+gβπΊ)[(π β (reverseβπ΄))] βΌ ) = [(π΄ ++ (π β (reverseβπ΄)))] βΌ ) |
19 | 1, 15 | efger 19627 |
. . . . 5
β’ βΌ Er
π |
20 | 19 | a1i 11 |
. . . 4
β’ (π΄ β π β βΌ Er π) |
21 | | eqid 2732 |
. . . . 5
β’ (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
22 | 1, 15, 7, 21 | efginvrel2 19636 |
. . . 4
β’ (π΄ β π β (π΄ ++ (π β (reverseβπ΄))) βΌ
β
) |
23 | 20, 22 | erthi 8756 |
. . 3
β’ (π΄ β π β [(π΄ ++ (π β (reverseβπ΄)))] βΌ = [β
] βΌ
) |
24 | 14, 15 | frgp0 19669 |
. . . . . 6
β’ (πΌ β V β (πΊ β Grp β§ [β
]
βΌ
= (0gβπΊ))) |
25 | 24 | adantr 481 |
. . . . 5
β’ ((πΌ β V β§ π = Word (πΌ Γ 2o)) β (πΊ β Grp β§ [β
]
βΌ
= (0gβπΊ))) |
26 | 11, 25 | syl 17 |
. . . 4
β’ (π΄ β π β (πΊ β Grp β§ [β
] βΌ =
(0gβπΊ))) |
27 | 26 | simprd 496 |
. . 3
β’ (π΄ β π β [β
] βΌ =
(0gβπΊ)) |
28 | 18, 23, 27 | 3eqtrd 2776 |
. 2
β’ (π΄ β π β ([π΄] βΌ
(+gβπΊ)[(π β (reverseβπ΄))] βΌ ) =
(0gβπΊ)) |
29 | 26 | simpld 495 |
. . 3
β’ (π΄ β π β πΊ β Grp) |
30 | | eqid 2732 |
. . . 4
β’
(BaseβπΊ) =
(BaseβπΊ) |
31 | 14, 15, 1, 30 | frgpeccl 19670 |
. . 3
β’ (π΄ β π β [π΄] βΌ β
(BaseβπΊ)) |
32 | 14, 15, 1, 30 | frgpeccl 19670 |
. . . 4
β’ ((π β (reverseβπ΄)) β π β [(π β (reverseβπ΄))] βΌ β
(BaseβπΊ)) |
33 | 13, 32 | syl 17 |
. . 3
β’ (π΄ β π β [(π β (reverseβπ΄))] βΌ β
(BaseβπΊ)) |
34 | | eqid 2732 |
. . . 4
β’
(0gβπΊ) = (0gβπΊ) |
35 | | frgpinv.n |
. . . 4
β’ π = (invgβπΊ) |
36 | 30, 16, 34, 35 | grpinvid1 18912 |
. . 3
β’ ((πΊ β Grp β§ [π΄] βΌ β
(BaseβπΊ) β§
[(π β
(reverseβπ΄))] βΌ β
(BaseβπΊ)) β
((πβ[π΄] βΌ ) = [(π β (reverseβπ΄))] βΌ β ([π΄] βΌ
(+gβπΊ)[(π β (reverseβπ΄))] βΌ ) =
(0gβπΊ))) |
37 | 29, 31, 33, 36 | syl3anc 1371 |
. 2
β’ (π΄ β π β ((πβ[π΄] βΌ ) = [(π β (reverseβπ΄))] βΌ β ([π΄] βΌ
(+gβπΊ)[(π β (reverseβπ΄))] βΌ ) =
(0gβπΊ))) |
38 | 28, 37 | mpbird 256 |
1
β’ (π΄ β π β (πβ[π΄] βΌ ) = [(π β (reverseβπ΄))] βΌ ) |