MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpinv Structured version   Visualization version   GIF version

Theorem frgpinv 19806
Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpadd.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpadd.g 𝐺 = (freeGrp‘𝐼)
frgpadd.r = ( ~FG𝐼)
frgpinv.n 𝑁 = (invg𝐺)
frgpinv.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
frgpinv (𝐴𝑊 → (𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] )
Distinct variable groups:   𝑦,𝑧,𝐼   𝑦, ,𝑧   𝑦,𝑊,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐺(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem frgpinv
Dummy variables 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpadd.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6999 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 4043 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
43sseli 4004 . . . . . . 7 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2o))
5 revcl 14809 . . . . . . 7 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
64, 5syl 17 . . . . . 6 (𝐴𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
7 frgpinv.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
87efgmf 19755 . . . . . 6 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
9 wrdco 14880 . . . . . 6 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
106, 8, 9sylancl 585 . . . . 5 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
111efgrcl 19757 . . . . . 6 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
1211simprd 495 . . . . 5 (𝐴𝑊𝑊 = Word (𝐼 × 2o))
1310, 12eleqtrrd 2847 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊)
14 frgpadd.g . . . . 5 𝐺 = (freeGrp‘𝐼)
15 frgpadd.r . . . . 5 = ( ~FG𝐼)
16 eqid 2740 . . . . 5 (+g𝐺) = (+g𝐺)
171, 14, 15, 16frgpadd 19805 . . . 4 ((𝐴𝑊 ∧ (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] )
1813, 17mpdan 686 . . 3 (𝐴𝑊 → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] )
191, 15efger 19760 . . . . 5 Er 𝑊
2019a1i 11 . . . 4 (𝐴𝑊 Er 𝑊)
21 eqid 2740 . . . . 5 (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩))) = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
221, 15, 7, 21efginvrel2 19769 . . . 4 (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)
2320, 22erthi 8816 . . 3 (𝐴𝑊 → [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] = [∅] )
2414, 15frgp0 19802 . . . . . 6 (𝐼 ∈ V → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2524adantr 480 . . . . 5 ((𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)) → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2611, 25syl 17 . . . 4 (𝐴𝑊 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2726simprd 495 . . 3 (𝐴𝑊 → [∅] = (0g𝐺))
2818, 23, 273eqtrd 2784 . 2 (𝐴𝑊 → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺))
2926simpld 494 . . 3 (𝐴𝑊𝐺 ∈ Grp)
30 eqid 2740 . . . 4 (Base‘𝐺) = (Base‘𝐺)
3114, 15, 1, 30frgpeccl 19803 . . 3 (𝐴𝑊 → [𝐴] ∈ (Base‘𝐺))
3214, 15, 1, 30frgpeccl 19803 . . . 4 ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺))
3313, 32syl 17 . . 3 (𝐴𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺))
34 eqid 2740 . . . 4 (0g𝐺) = (0g𝐺)
35 frgpinv.n . . . 4 𝑁 = (invg𝐺)
3630, 16, 34, 35grpinvid1 19031 . . 3 ((𝐺 ∈ Grp ∧ [𝐴] ∈ (Base‘𝐺) ∧ [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺)) → ((𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] ↔ ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺)))
3729, 31, 33, 36syl3anc 1371 . 2 (𝐴𝑊 → ((𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] ↔ ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺)))
3828, 37mpbird 257 1 (𝐴𝑊 → (𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  c0 4352  cop 4654  cotp 4656  cmpt 5249   I cid 5592   × cxp 5698  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516   Er wer 8760  [cec 8761  0cc0 11184  ...cfz 13567  chash 14379  Word cword 14562   ++ cconcat 14618   splice csplice 14797  reversecreverse 14806  ⟨“cs2 14890  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974   ~FG cefg 19748  freeGrpcfrgp 19749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-frmd 18884  df-grp 18976  df-minusg 18977  df-efg 19751  df-frgp 19752
This theorem is referenced by:  vrgpinv  19811
  Copyright terms: Public domain W3C validator