MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpinv Structured version   Visualization version   GIF version

Theorem frgpinv 19370
Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpadd.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpadd.g 𝐺 = (freeGrp‘𝐼)
frgpadd.r = ( ~FG𝐼)
frgpinv.n 𝑁 = (invg𝐺)
frgpinv.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
frgpinv (𝐴𝑊 → (𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] )
Distinct variable groups:   𝑦,𝑧,𝐼   𝑦, ,𝑧   𝑦,𝑊,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐺(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem frgpinv
Dummy variables 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpadd.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6845 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 3955 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
43sseli 3917 . . . . . . 7 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2o))
5 revcl 14474 . . . . . . 7 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
64, 5syl 17 . . . . . 6 (𝐴𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
7 frgpinv.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
87efgmf 19319 . . . . . 6 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
9 wrdco 14544 . . . . . 6 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
106, 8, 9sylancl 586 . . . . 5 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
111efgrcl 19321 . . . . . 6 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
1211simprd 496 . . . . 5 (𝐴𝑊𝑊 = Word (𝐼 × 2o))
1310, 12eleqtrrd 2842 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊)
14 frgpadd.g . . . . 5 𝐺 = (freeGrp‘𝐼)
15 frgpadd.r . . . . 5 = ( ~FG𝐼)
16 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
171, 14, 15, 16frgpadd 19369 . . . 4 ((𝐴𝑊 ∧ (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] )
1813, 17mpdan 684 . . 3 (𝐴𝑊 → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] )
191, 15efger 19324 . . . . 5 Er 𝑊
2019a1i 11 . . . 4 (𝐴𝑊 Er 𝑊)
21 eqid 2738 . . . . 5 (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩))) = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
221, 15, 7, 21efginvrel2 19333 . . . 4 (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)
2320, 22erthi 8549 . . 3 (𝐴𝑊 → [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] = [∅] )
2414, 15frgp0 19366 . . . . . 6 (𝐼 ∈ V → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2524adantr 481 . . . . 5 ((𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)) → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2611, 25syl 17 . . . 4 (𝐴𝑊 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2726simprd 496 . . 3 (𝐴𝑊 → [∅] = (0g𝐺))
2818, 23, 273eqtrd 2782 . 2 (𝐴𝑊 → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺))
2926simpld 495 . . 3 (𝐴𝑊𝐺 ∈ Grp)
30 eqid 2738 . . . 4 (Base‘𝐺) = (Base‘𝐺)
3114, 15, 1, 30frgpeccl 19367 . . 3 (𝐴𝑊 → [𝐴] ∈ (Base‘𝐺))
3214, 15, 1, 30frgpeccl 19367 . . . 4 ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺))
3313, 32syl 17 . . 3 (𝐴𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺))
34 eqid 2738 . . . 4 (0g𝐺) = (0g𝐺)
35 frgpinv.n . . . 4 𝑁 = (invg𝐺)
3630, 16, 34, 35grpinvid1 18630 . . 3 ((𝐺 ∈ Grp ∧ [𝐴] ∈ (Base‘𝐺) ∧ [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺)) → ((𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] ↔ ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺)))
3729, 31, 33, 36syl3anc 1370 . 2 (𝐴𝑊 → ((𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] ↔ ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺)))
3828, 37mpbird 256 1 (𝐴𝑊 → (𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  c0 4256  cop 4567  cotp 4569  cmpt 5157   I cid 5488   × cxp 5587  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291   Er wer 8495  [cec 8496  0cc0 10871  ...cfz 13239  chash 14044  Word cword 14217   ++ cconcat 14273   splice csplice 14462  reversecreverse 14471  ⟨“cs2 14554  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578   ~FG cefg 19312  freeGrpcfrgp 19313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-frmd 18488  df-grp 18580  df-minusg 18581  df-efg 19315  df-frgp 19316
This theorem is referenced by:  vrgpinv  19375
  Copyright terms: Public domain W3C validator