Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpinv | Structured version Visualization version GIF version |
Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpadd.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
frgpadd.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpadd.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
frgpinv.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
Ref | Expression |
---|---|
frgpinv | ⊢ (𝐴 ∈ 𝑊 → (𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpadd.w | . . . . . . . . 9 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | fviss 6845 | . . . . . . . . 9 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
3 | 1, 2 | eqsstri 3955 | . . . . . . . 8 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
4 | 3 | sseli 3917 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ Word (𝐼 × 2o)) |
5 | revcl 14474 | . . . . . . 7 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) |
7 | frgpinv.m | . . . . . . 7 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
8 | 7 | efgmf 19319 | . . . . . 6 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
9 | wrdco 14544 | . . . . . 6 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) | |
10 | 6, 8, 9 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) |
11 | 1 | efgrcl 19321 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
12 | 11 | simprd 496 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
13 | 10, 12 | eleqtrrd 2842 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) |
14 | frgpadd.g | . . . . 5 ⊢ 𝐺 = (freeGrp‘𝐼) | |
15 | frgpadd.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
16 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 1, 14, 15, 16 | frgpadd 19369 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) → ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] ∼ ) |
18 | 13, 17 | mpdan 684 | . . 3 ⊢ (𝐴 ∈ 𝑊 → ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] ∼ ) |
19 | 1, 15 | efger 19324 | . . . . 5 ⊢ ∼ Er 𝑊 |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → ∼ Er 𝑊) |
21 | eqid 2738 | . . . . 5 ⊢ (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
22 | 1, 15, 7, 21 | efginvrel2 19333 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∼ ∅) |
23 | 20, 22 | erthi 8549 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] ∼ = [∅] ∼ ) |
24 | 14, 15 | frgp0 19366 | . . . . . 6 ⊢ (𝐼 ∈ V → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) |
25 | 24 | adantr 481 | . . . . 5 ⊢ ((𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)) → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) |
26 | 11, 25 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) |
27 | 26 | simprd 496 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [∅] ∼ = (0g‘𝐺)) |
28 | 18, 23, 27 | 3eqtrd 2782 | . 2 ⊢ (𝐴 ∈ 𝑊 → ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = (0g‘𝐺)) |
29 | 26 | simpld 495 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐺 ∈ Grp) |
30 | eqid 2738 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
31 | 14, 15, 1, 30 | frgpeccl 19367 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [𝐴] ∼ ∈ (Base‘𝐺)) |
32 | 14, 15, 1, 30 | frgpeccl 19367 | . . . 4 ⊢ ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∼ ∈ (Base‘𝐺)) |
33 | 13, 32 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∼ ∈ (Base‘𝐺)) |
34 | eqid 2738 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
35 | frgpinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
36 | 30, 16, 34, 35 | grpinvid1 18630 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ [𝐴] ∼ ∈ (Base‘𝐺) ∧ [(𝑀 ∘ (reverse‘𝐴))] ∼ ∈ (Base‘𝐺)) → ((𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ↔ ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = (0g‘𝐺))) |
37 | 29, 31, 33, 36 | syl3anc 1370 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ↔ ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = (0g‘𝐺))) |
38 | 28, 37 | mpbird 256 | 1 ⊢ (𝐴 ∈ 𝑊 → (𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ∅c0 4256 〈cop 4567 〈cotp 4569 ↦ cmpt 5157 I cid 5488 × cxp 5587 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1oc1o 8290 2oc2o 8291 Er wer 8495 [cec 8496 0cc0 10871 ...cfz 13239 ♯chash 14044 Word cword 14217 ++ cconcat 14273 splice csplice 14462 reversecreverse 14471 〈“cs2 14554 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Grpcgrp 18577 invgcminusg 18578 ~FG cefg 19312 freeGrpcfrgp 19313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-lsw 14266 df-concat 14274 df-s1 14301 df-substr 14354 df-pfx 14384 df-splice 14463 df-reverse 14472 df-s2 14561 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-0g 17152 df-imas 17219 df-qus 17220 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-frmd 18488 df-grp 18580 df-minusg 18581 df-efg 19315 df-frgp 19316 |
This theorem is referenced by: vrgpinv 19375 |
Copyright terms: Public domain | W3C validator |