MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpinv Structured version   Visualization version   GIF version

Theorem frgpinv 19643
Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpadd.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpadd.g 𝐺 = (freeGrp‘𝐼)
frgpadd.r = ( ~FG𝐼)
frgpinv.n 𝑁 = (invg𝐺)
frgpinv.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
frgpinv (𝐴𝑊 → (𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] )
Distinct variable groups:   𝑦,𝑧,𝐼   𝑦, ,𝑧   𝑦,𝑊,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐺(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem frgpinv
Dummy variables 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpadd.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6900 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 3982 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
43sseli 3931 . . . . . . 7 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2o))
5 revcl 14667 . . . . . . 7 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
64, 5syl 17 . . . . . 6 (𝐴𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
7 frgpinv.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
87efgmf 19592 . . . . . 6 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
9 wrdco 14738 . . . . . 6 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
106, 8, 9sylancl 586 . . . . 5 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
111efgrcl 19594 . . . . . 6 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
1211simprd 495 . . . . 5 (𝐴𝑊𝑊 = Word (𝐼 × 2o))
1310, 12eleqtrrd 2831 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊)
14 frgpadd.g . . . . 5 𝐺 = (freeGrp‘𝐼)
15 frgpadd.r . . . . 5 = ( ~FG𝐼)
16 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
171, 14, 15, 16frgpadd 19642 . . . 4 ((𝐴𝑊 ∧ (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] )
1813, 17mpdan 687 . . 3 (𝐴𝑊 → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] )
191, 15efger 19597 . . . . 5 Er 𝑊
2019a1i 11 . . . 4 (𝐴𝑊 Er 𝑊)
21 eqid 2729 . . . . 5 (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩))) = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
221, 15, 7, 21efginvrel2 19606 . . . 4 (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)
2320, 22erthi 8681 . . 3 (𝐴𝑊 → [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] = [∅] )
2414, 15frgp0 19639 . . . . . 6 (𝐼 ∈ V → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2524adantr 480 . . . . 5 ((𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)) → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2611, 25syl 17 . . . 4 (𝐴𝑊 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2726simprd 495 . . 3 (𝐴𝑊 → [∅] = (0g𝐺))
2818, 23, 273eqtrd 2768 . 2 (𝐴𝑊 → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺))
2926simpld 494 . . 3 (𝐴𝑊𝐺 ∈ Grp)
30 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
3114, 15, 1, 30frgpeccl 19640 . . 3 (𝐴𝑊 → [𝐴] ∈ (Base‘𝐺))
3214, 15, 1, 30frgpeccl 19640 . . . 4 ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺))
3313, 32syl 17 . . 3 (𝐴𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺))
34 eqid 2729 . . . 4 (0g𝐺) = (0g𝐺)
35 frgpinv.n . . . 4 𝑁 = (invg𝐺)
3630, 16, 34, 35grpinvid1 18870 . . 3 ((𝐺 ∈ Grp ∧ [𝐴] ∈ (Base‘𝐺) ∧ [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺)) → ((𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] ↔ ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺)))
3729, 31, 33, 36syl3anc 1373 . 2 (𝐴𝑊 → ((𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] ↔ ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺)))
3828, 37mpbird 257 1 (𝐴𝑊 → (𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cdif 3900  c0 4284  cop 4583  cotp 4585  cmpt 5173   I cid 5513   × cxp 5617  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  1oc1o 8381  2oc2o 8382   Er wer 8622  [cec 8623  0cc0 11009  ...cfz 13410  chash 14237  Word cword 14420   ++ cconcat 14477   splice csplice 14655  reversecreverse 14664  ⟨“cs2 14748  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18812  invgcminusg 18813   ~FG cefg 19585  freeGrpcfrgp 19586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-splice 14656  df-reverse 14665  df-s2 14755  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-frmd 18723  df-grp 18815  df-minusg 18816  df-efg 19588  df-frgp 19589
This theorem is referenced by:  vrgpinv  19648
  Copyright terms: Public domain W3C validator