| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpinv | Structured version Visualization version GIF version | ||
| Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| frgpadd.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| frgpadd.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
| frgpadd.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| frgpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| frgpinv.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| Ref | Expression |
|---|---|
| frgpinv | ⊢ (𝐴 ∈ 𝑊 → (𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpadd.w | . . . . . . . . 9 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | fviss 6894 | . . . . . . . . 9 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
| 3 | 1, 2 | eqsstri 3976 | . . . . . . . 8 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
| 4 | 3 | sseli 3925 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ Word (𝐼 × 2o)) |
| 5 | revcl 14663 | . . . . . . 7 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) |
| 7 | frgpinv.m | . . . . . . 7 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 8 | 7 | efgmf 19620 | . . . . . 6 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
| 9 | wrdco 14733 | . . . . . 6 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) | |
| 10 | 6, 8, 9 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) |
| 11 | 1 | efgrcl 19622 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
| 12 | 11 | simprd 495 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
| 13 | 10, 12 | eleqtrrd 2834 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) |
| 14 | frgpadd.g | . . . . 5 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 15 | frgpadd.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 16 | eqid 2731 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 1, 14, 15, 16 | frgpadd 19670 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) → ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] ∼ ) |
| 18 | 13, 17 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ 𝑊 → ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] ∼ ) |
| 19 | 1, 15 | efger 19625 | . . . . 5 ⊢ ∼ Er 𝑊 |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → ∼ Er 𝑊) |
| 21 | eqid 2731 | . . . . 5 ⊢ (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 22 | 1, 15, 7, 21 | efginvrel2 19634 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∼ ∅) |
| 23 | 20, 22 | erthi 8673 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] ∼ = [∅] ∼ ) |
| 24 | 14, 15 | frgp0 19667 | . . . . . 6 ⊢ (𝐼 ∈ V → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)) → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) |
| 26 | 11, 25 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) |
| 27 | 26 | simprd 495 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [∅] ∼ = (0g‘𝐺)) |
| 28 | 18, 23, 27 | 3eqtrd 2770 | . 2 ⊢ (𝐴 ∈ 𝑊 → ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = (0g‘𝐺)) |
| 29 | 26 | simpld 494 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐺 ∈ Grp) |
| 30 | eqid 2731 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 31 | 14, 15, 1, 30 | frgpeccl 19668 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [𝐴] ∼ ∈ (Base‘𝐺)) |
| 32 | 14, 15, 1, 30 | frgpeccl 19668 | . . . 4 ⊢ ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∼ ∈ (Base‘𝐺)) |
| 33 | 13, 32 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∼ ∈ (Base‘𝐺)) |
| 34 | eqid 2731 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 35 | frgpinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 36 | 30, 16, 34, 35 | grpinvid1 18899 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ [𝐴] ∼ ∈ (Base‘𝐺) ∧ [(𝑀 ∘ (reverse‘𝐴))] ∼ ∈ (Base‘𝐺)) → ((𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ↔ ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = (0g‘𝐺))) |
| 37 | 29, 31, 33, 36 | syl3anc 1373 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ↔ ([𝐴] ∼ (+g‘𝐺)[(𝑀 ∘ (reverse‘𝐴))] ∼ ) = (0g‘𝐺))) |
| 38 | 28, 37 | mpbird 257 | 1 ⊢ (𝐴 ∈ 𝑊 → (𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∅c0 4278 〈cop 4577 〈cotp 4579 ↦ cmpt 5167 I cid 5505 × cxp 5609 ∘ ccom 5615 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 1oc1o 8373 2oc2o 8374 Er wer 8614 [cec 8615 0cc0 11001 ...cfz 13402 ♯chash 14232 Word cword 14415 ++ cconcat 14472 splice csplice 14651 reversecreverse 14660 〈“cs2 14743 Basecbs 17115 +gcplusg 17156 0gc0g 17338 Grpcgrp 18841 invgcminusg 18842 ~FG cefg 19613 freeGrpcfrgp 19614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-lsw 14465 df-concat 14473 df-s1 14499 df-substr 14544 df-pfx 14574 df-splice 14652 df-reverse 14661 df-s2 14750 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-0g 17340 df-imas 17407 df-qus 17408 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-frmd 18752 df-grp 18844 df-minusg 18845 df-efg 19616 df-frgp 19617 |
| This theorem is referenced by: vrgpinv 19676 |
| Copyright terms: Public domain | W3C validator |