MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpinv Structured version   Visualization version   GIF version

Theorem frgpinv 19670
Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpadd.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpadd.g 𝐺 = (freeGrp‘𝐼)
frgpadd.r = ( ~FG𝐼)
frgpinv.n 𝑁 = (invg𝐺)
frgpinv.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
frgpinv (𝐴𝑊 → (𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] )
Distinct variable groups:   𝑦,𝑧,𝐼   𝑦, ,𝑧   𝑦,𝑊,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐺(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem frgpinv
Dummy variables 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpadd.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6920 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 3990 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
43sseli 3939 . . . . . . 7 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2o))
5 revcl 14702 . . . . . . 7 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
64, 5syl 17 . . . . . 6 (𝐴𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
7 frgpinv.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
87efgmf 19619 . . . . . 6 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
9 wrdco 14773 . . . . . 6 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
106, 8, 9sylancl 586 . . . . 5 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
111efgrcl 19621 . . . . . 6 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
1211simprd 495 . . . . 5 (𝐴𝑊𝑊 = Word (𝐼 × 2o))
1310, 12eleqtrrd 2831 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊)
14 frgpadd.g . . . . 5 𝐺 = (freeGrp‘𝐼)
15 frgpadd.r . . . . 5 = ( ~FG𝐼)
16 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
171, 14, 15, 16frgpadd 19669 . . . 4 ((𝐴𝑊 ∧ (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] )
1813, 17mpdan 687 . . 3 (𝐴𝑊 → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] )
191, 15efger 19624 . . . . 5 Er 𝑊
2019a1i 11 . . . 4 (𝐴𝑊 Er 𝑊)
21 eqid 2729 . . . . 5 (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩))) = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
221, 15, 7, 21efginvrel2 19633 . . . 4 (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)
2320, 22erthi 8704 . . 3 (𝐴𝑊 → [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] = [∅] )
2414, 15frgp0 19666 . . . . . 6 (𝐼 ∈ V → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2524adantr 480 . . . . 5 ((𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)) → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2611, 25syl 17 . . . 4 (𝐴𝑊 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2726simprd 495 . . 3 (𝐴𝑊 → [∅] = (0g𝐺))
2818, 23, 273eqtrd 2768 . 2 (𝐴𝑊 → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺))
2926simpld 494 . . 3 (𝐴𝑊𝐺 ∈ Grp)
30 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
3114, 15, 1, 30frgpeccl 19667 . . 3 (𝐴𝑊 → [𝐴] ∈ (Base‘𝐺))
3214, 15, 1, 30frgpeccl 19667 . . . 4 ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺))
3313, 32syl 17 . . 3 (𝐴𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺))
34 eqid 2729 . . . 4 (0g𝐺) = (0g𝐺)
35 frgpinv.n . . . 4 𝑁 = (invg𝐺)
3630, 16, 34, 35grpinvid1 18899 . . 3 ((𝐺 ∈ Grp ∧ [𝐴] ∈ (Base‘𝐺) ∧ [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺)) → ((𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] ↔ ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺)))
3729, 31, 33, 36syl3anc 1373 . 2 (𝐴𝑊 → ((𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] ↔ ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺)))
3828, 37mpbird 257 1 (𝐴𝑊 → (𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  c0 4292  cop 4591  cotp 4593  cmpt 5183   I cid 5525   × cxp 5629  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1oc1o 8404  2oc2o 8405   Er wer 8645  [cec 8646  0cc0 11044  ...cfz 13444  chash 14271  Word cword 14454   ++ cconcat 14511   splice csplice 14690  reversecreverse 14699  ⟨“cs2 14783  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18841  invgcminusg 18842   ~FG cefg 19612  freeGrpcfrgp 19613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-frmd 18752  df-grp 18844  df-minusg 18845  df-efg 19615  df-frgp 19616
This theorem is referenced by:  vrgpinv  19675
  Copyright terms: Public domain W3C validator